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Creating and Concatenating Matrices
In this section...
“Overview” on page 1-2
“Constructing a Simple Matrix” on page 1-3
“Specialized Matrix Functions” on page 1-4
“Concatenating Matrices” on page 1-6
“Matrix Concatenation Functions” on page 1-7
“Generating a Numeric Sequence” on page 1-9

Overview
The most basic MATLAB data structure is the matrix: a two-dimensional, rectangularly
shaped data structure capable of storing multiple elements of data in an easily accessible
format. These data elements can be numbers, characters, logical states of true or false,
or even other MATLAB structure types. MATLAB uses these two-dimensional matrices
to store single numbers and linear series of numbers as well. In these cases, the
dimensions are 1-by-1 and 1-by-n respectively, where n is the length of the numeric
series. MATLAB also supports data structures that have more than two dimensions.
These data structures are referred to as arrays in the MATLAB documentation.

MATLAB is a matrix-based computing environment. All of the data that you enter into
MATLAB is stored in the form of a matrix or a multidimensional array. Even a single
numeric value like 100 is stored as a matrix (in this case, a matrix having dimensions 1-
by-1):

A = 100;

whos A
  Name      Size                   Bytes  Class

  A         1x1                        8  double array

Regardless of the class being used, whether it is numeric, character, or logical true or
false data, MATLAB stores this data in matrix (or array) form. For example, 'Hello
World' is a 1-by-11 matrix of individual character elements in MATLAB. You can also
build matrices composed of more complex classes, such as MATLAB structures and cell
arrays.
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To create a matrix of basic data elements such as numbers or characters, see

• “Constructing a Simple Matrix” on page 1-3
• “Specialized Matrix Functions” on page 1-4

To build a matrix composed of other matrices, see

• “Concatenating Matrices” on page 1-6
• “Matrix Concatenation Functions” on page 1-7

Constructing a Simple Matrix

The simplest way to create a matrix in MATLAB is to use the matrix constructor
operator, []. Create a row in the matrix by entering elements (shown as E below) within
the brackets. Separate each element with a comma or space:

row = [E1, E2, ..., Em]          row = [E1 E2 ... Em]

For example, to create a one row matrix of five elements, type

A = [12 62 93 -8 22];

To start a new row, terminate the current row with a semicolon:

A = [row1; row2; ...; rown]

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers. Note that all
rows must have the same number of elements:

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]
A =
    12    62    93    -8    22
    16     2    87    43    91
    -4    17   -72    95     6

The square brackets operator constructs two-dimensional matrices only, (including 0-
by-0, 1-by-1, and 1-by-n matrices). To construct arrays of more than two dimensions, see
“Creating Multidimensional Arrays” on page 1-49.

For instructions on how to read or overwrite any matrix element, see “Matrix Indexing”
on page 1-11.
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Entering Signed Numbers

When entering signed numbers into a matrix, make sure that the sign immediately
precedes the numeric value. Note that while the following two expressions are
equivalent,

   7 -2 +5                                 7 - 2 + 5
   ans =                                     ans =
       10                                        10

the next two are not:

   [7 -2 +5]                              [7 - 2 + 5]
   ans =                                     ans =
        7    -2     5                            10

Specialized Matrix Functions

MATLAB has a number of functions that create different kinds of matrices. Some create
specialized matrices like the Hankel or Vandermonde matrix. The functions shown in the
table below create matrices for more general use.
Function Description
ones Create a matrix or array of all ones.
zeros Create a matrix or array of all zeros.
eye Create a matrix with ones on the diagonal and zeros elsewhere.
accumarray Distribute elements of an input matrix to specified locations in an

output matrix, also allowing for accumulation.
diag Create a diagonal matrix from a vector.
magic Create a square matrix with rows, columns, and diagonals that add

up to the same number.
rand Create a matrix or array of uniformly distributed random numbers.
randn Create a matrix or array of normally distributed random numbers

and arrays.
randperm Create a vector (1-by-n matrix) containing a random permutation of

the specified integers.
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Most of these functions return matrices of type double (double-precision floating point).
However, you can easily build basic arrays of any numeric type using the ones, zeros,
and eye functions.

To do this, specify the MATLAB class name as the last argument:
A = zeros(4, 6, 'uint32')
A =

  4×6 uint32 matrix

   0   0   0   0   0   0
   0   0   0   0   0   0
   0   0   0   0   0   0
   0   0   0   0   0   0

Examples

Here are some examples of how you can use these functions.
Creating a Magic Square Matrix

A magic square is a matrix in which the sum of the elements in each column, or each
row, or each main diagonal is the same. To create a 5-by-5 magic square matrix, use the
magic function as shown.

A = magic(5)
A =
    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

Note that the elements of each row, each column, and each main diagonal add up to the
same value: 65.
Creating a Diagonal Matrix

Use diag to create a diagonal matrix from a vector. You can place the vector along the
main diagonal of the matrix, or on a diagonal that is above or below the main one, as
shown here. The -1 input places the vector one row below the main diagonal:

A = [12 62 93 -8 22];
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B = diag(A, -1)
B =
     0     0     0     0     0     0
    12     0     0     0     0     0
     0    62     0     0     0     0
     0     0    93     0     0     0
     0     0     0    -8     0     0
     0     0     0     0    22     0

Concatenating Matrices

Matrix concatenation is the process of joining one or more matrices to make a new
matrix. The brackets [] operator discussed earlier in this section serves not only as a
matrix constructor, but also as the MATLAB concatenation operator. The expression C =
[A B] horizontally concatenates matrices A and B. The expression C = [A; B]
vertically concatenates them.

This example constructs a new matrix C by concatenating matrices A and B in a vertical
direction:

A = ones(2, 5) * 6;        % 2-by-5 matrix of 6's
B = rand(3, 5);            % 3-by-5 matrix of random values

C = [A; B]                 % Vertically concatenate A and B
C =
    6.0000    6.0000    6.0000    6.0000    6.0000
    6.0000    6.0000    6.0000    6.0000    6.0000
    0.9501    0.4860    0.4565    0.4447    0.9218
    0.2311    0.8913    0.0185    0.6154    0.7382
    0.6068    0.7621    0.8214    0.7919    0.1763

Keeping Matrices Rectangular

You can construct matrices, or even multidimensional arrays, using concatenation as
long as the resulting matrix does not have an irregular shape (as in the second
illustration shown below). If you are building a matrix horizontally, then each component
matrix must have the same number of rows. When building vertically, each component
must have the same number of columns.

This diagram shows two matrices of the same height (i.e., same number of rows) being
combined horizontally to form a new matrix.
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The next diagram illustrates an attempt to horizontally combine two matrices of unequal
height. MATLAB does not allow this.

Matrix Concatenation Functions

The following functions combine existing matrices to form a new matrix.
Function Description
cat Concatenate matrices along the specified dimension
horzcat Horizontally concatenate matrices
vertcat Vertically concatenate matrices
repmat Create a new matrix by replicating and tiling existing matrices
blkdiag Create a block diagonal matrix from existing matrices

Examples

Here are some examples of how you can use these functions.

Concatenating Matrices and Arrays

An alternative to using the [] operator for concatenation are the three functions cat,
horzcat, and vertcat. With these functions, you can construct matrices (or
multidimensional arrays) along a specified dimension. Either of the following commands
accomplish the same task as the command C = [A; B] used in the section on
“Concatenating Matrices” on page 1-6:

C = cat(1, A, B);       % Concatenate along the first dimension
C = vertcat(A, B);      % Concatenate vertically
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Replicating a Matrix

Use the repmat function to create a matrix composed of copies of an existing matrix.
When you enter

repmat(M, v, h)

MATLAB replicates input matrix M v times vertically and h times horizontally. For
example, to replicate existing matrix A into a new matrix B, use

A = [8 1 6; 3 5 7; 4 9 2]
A =
   8   1   6
   3   5   7
   4   9   2

B = repmat(A, 2, 4)
B =
   8   1   6   8   1   6   8   1   6   8   1   6
   3   5   7   3   5   7   3   5   7   3   5   7
   4   9   2   4   9   2   4   9   2   4   9   2
   8   1   6   8   1   6   8   1   6   8   1   6
   3   5   7   3   5   7   3   5   7   3   5   7
   4   9   2   4   9   2   4   9   2   4   9   2

Creating a Block Diagonal Matrix

The blkdiag function combines matrices in a diagonal direction, creating what is called
a block diagonal matrix. All other elements of the newly created matrix are set to zero:

A = magic(3);
B = [-5 -6 -9; -4 -4 -2];
C = eye(2) * 8;

D = blkdiag(A, B, C)
D =
   8   1   6   0   0   0   0   0
   3   5   7   0   0   0   0   0
   4   9   2   0   0   0   0   0
   0   0   0  -5  -6  -9   0   0
   0   0   0  -4  -4  -2   0   0
   0   0   0   0   0   0   8   0
   0   0   0   0   0   0   0   8
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Generating a Numeric Sequence

Because numeric sequences can often be useful in constructing and indexing into
matrices and arrays, MATLAB provides a special operator to assist in creating them.

This section covers

• “The Colon Operator” on page 1-9
• “Using the Colon Operator with a Step Value” on page 1-10

The Colon Operator

The colon operator (first:last) generates a 1-by-n matrix (or vector) of sequential
numbers from the first value to the last. The default sequence is made up of
incremental values, each 1 greater than the previous one:

A = 10:15
A =
    10    11    12    13    14    15

The numeric sequence does not have to be made up of positive integers. It can include
negative numbers and fractional numbers as well:

A = -2.5:2.5
A =
   -2.5000   -1.5000   -0.5000    0.5000    1.5000    2.5000

By default, MATLAB always increments by exactly 1 when creating the sequence, even if
the ending value is not an integral distance from the start:

A = 1:6.3
A =
     1     2     3     4     5     6

Also, the default series generated by the colon operator always contains increments
rather than decrements. The operation shown in this example attempts to increment
from 9 to 1 and thus MATLAB returns an empty matrix on page 1-42:

A = 9:1
A =
   Empty matrix: 1-by-0

The next section explains how to generate a nondefault numeric series.
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Using the Colon Operator with a Step Value

To generate a series that does not use the default of incrementing by 1, specify an
additional value with the colon operator (first:step:last). In between the starting
and ending value is a step value that tells MATLAB how much to increment (or
decrement, if step is negative) between each number it generates.

To generate a series of numbers from 10 to 50, incrementing by 5, use

A = 10:5:50
A =
    10    15    20    25    30    35    40    45    50

You can increment by noninteger values. This example increments by 0.2:

A = 3:0.2:3.8
A =
    3.0000    3.2000    3.4000    3.6000    3.8000

To create a sequence with a decrementing interval, specify a negative step value:

A = 9:-1:1
A =
    9    8    7    6    5    4    3    2    1
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Matrix Indexing

In this section...
“Accessing Single Elements” on page 1-11
“Linear Indexing” on page 1-12
“Functions That Control Indexing Style” on page 1-12
“Assigning to Elements Outside Array Bounds” on page 1-13
“Accessing Multiple Elements” on page 1-13
“Using Logicals in Array Indexing” on page 1-16
“Single-Colon Indexing with Different Array Types” on page 1-20
“Indexing on Assignment” on page 1-20

Accessing Single Elements

To reference a particular element in a matrix, specify its row and column number using
the following syntax, where A is the matrix variable. Always specify the row first and
column second:

A(row, column)

For example, for a 4-by-4 magic square A,

A = magic(4)
A =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

you would access the element at row 4, column 2 with

A(4,2)
ans =
    14

For arrays with more than two dimensions, specify additional indices following the row
and column indices. See the section on “Multidimensional Arrays” on page 1-47.
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Linear Indexing
You can refer to the elements of a MATLAB matrix with a single subscript, A(k).
MATLAB stores matrices and arrays not in the shape that they appear when displayed
in the MATLAB Command Window, but as a single column of elements. This single
column is composed of all of the columns from the matrix, each appended to the last.

So, matrix A
A = [2 6 9; 4 2 8; 3 5 1]
A =
     2     6     9
     4     2     8
     3     5     1

is actually stored in memory as the sequence
2, 4, 3, 6, 2, 5, 9, 8, 1

The element at row 3, column 2 of matrix A (value = 5) can also be identified as element 6
in the actual storage sequence. To access this element, you have a choice of using the
standard A(3,2) syntax, or you can use A(6), which is referred to as linear indexing.

If you supply more subscripts, MATLAB calculates an index into the storage column
based on the dimensions you assigned to the array. For example, assume a two-
dimensional array like A has size [d1 d2], where d1 is the number of rows in the array
and d2 is the number of columns. If you supply two subscripts (i, j) representing row-
column indices, the offset is
(j-1) * d1 + i

Given the expression A(3,2), MATLAB calculates the offset into A's storage column as
(2-1) * 3 + 3, or 6. Counting down six elements in the column accesses the value 5.

Functions That Control Indexing Style
If you have row-column subscripts but want to use linear indexing instead, you can
convert to the latter using the sub2ind function. In the 3-by-3 matrix A used in the
previous section, sub2ind changes a standard row-column index of (3,2) to a linear index
of 6:

A = [2 6 9; 4 2 8; 3 5 1];
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linearindex = sub2ind(size(A), 3, 2)
linearindex = 
     6

To get the row-column equivalent of a linear index, use the ind2sub function:

[row col] = ind2sub(size(A), 6)
row =
     3
col =
     2

Assigning to Elements Outside Array Bounds
When you assign to elements outside the bounds of a numeric array, MATLAB expands
the array to include those elements and fills the missing values with 0.

Assign a value to an element outside the bounds of A.

A = magic(4);
A(3,5) = 7
A =
    16     2     3    13     0
     5    11    10     8     0
     9     7     6    12     7
     4    14    15     1     0

When you extend structure and cell arrays, MATLAB fills unaddressed elements with an
empty value. MATLAB fills unaddressed elements in categorical arrays with
<undefined>. For datetime arrays, MATLAB fills unaddressed elements with NaT (Not-
a-Time).

If you try to refer to elements outside an array on the right side of an assignment
statement, MATLAB throws an error.
test = A(7,7)

Index exceeds matrix dimensions.

Accessing Multiple Elements
For the 4-by-4 matrix A shown below, it is possible to compute the sum of the elements in
the fourth column of A by typing
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A = magic(4);
A(1,4) + A(2,4) + A(3,4) + A(4,4)

You can reduce the size of this expression using the colon operator. Subscript expressions
involving colons refer to portions of a matrix. The expression

A(1:m, n)

refers to the elements in rows 1 through m of column n of matrix A. Using this notation,
you can compute the sum of the fourth column of A more succinctly:

sum(A(1:4, 4))

Nonconsecutive Elements

To refer to nonconsecutive elements in a matrix, use the colon operator with a step value.
The m:3:n in this expression means to make the assignment to every third element in
the matrix. Note that this example uses linear indexing:

B = A;

B(1:3:16) = -10
B =
   -10     2     3   -10
     5    11   -10     8
     9   -10     6    12
   -10    14    15   -10

MATLAB supports a type of array indexing that uses one array as the index into another
array. You can base this type of indexing on either the values or the positions of elements
in the indexing array.

Here is an example of value-based indexing where array B indexes into elements 1, 3, 6,
7, and 10 of array A. In this case, the numeric values of array B designate the intended
elements of A:

A = 5:5:50
A =
     5    10    15    20    25    30    35    40    45    50
B = [1 3 6 7 10];

A(B)
ans =
     5    15    30    35    50
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If you index into a vector with another vector, the orientation of the indexed vector is
honored for the output:

A(B')
ans =

     5    15    30    35    50
A1 = A'; A1(B)
ans =

     5
    15
    30
    35
    50

If you index into a vector with a nonvector, the shape of the indices is honored:

C = [1 3 6; 7 9 10];
A(C)
ans =

     5    15    30
    35    45    50

The end Keyword

MATLAB provides the keyword end to designate the last element in a particular
dimension of an array. This keyword can be useful in instances where your program does
not know how many rows or columns there are in a matrix. You can replace the
expression in the previous example with

B(1:3:end) = -10

Note The keyword end has several meanings in MATLAB. It can be used as explained
above, or to terminate a conditional block of code such as if and for blocks, or to
terminate a nested function.
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Specifying All Elements of a Row or Column

The colon by itself refers to all the elements in a row or column of a matrix. Using the
following syntax, you can compute the sum of all elements in the second column of a 4-
by-4 magic square A:

sum(A(:, 2))
ans =
    34

By using the colon with linear indexing, you can refer to all elements in the entire
matrix. This example displays all the elements of matrix A, returning them in a column-
wise order:

A(:)
ans =
    16
     5
     9
     4
     .
     .
     .
    12
     1

Using Logicals in Array Indexing

A logical array index designates the elements of an array A based on their position in the
indexing array, B, not their value. In this masking type of operation, every true element
in the indexing array is treated as a positional index into the array being accessed.

In the following example, B is a matrix of logical ones and zeros. The position of these
elements in B determines which elements of A are designated by the expression A(B):

A = [1 2 3; 4 5 6; 7 8 9]
A =
     1     2     3
     4     5     6
     7     8     9

B = logical([0 1 0; 1 0 1; 0 0 1])
B =
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  3×3 logical array

   0   1   0
   1   0   1
   0   0   1

A(B) 
ans =
     4
     2
     6
     9

The find function can be useful with logical arrays as it returns the linear indices of
nonzero elements in B, and thus helps to interpret A(B):

find(B)
ans =
     2
     4
     8
     9

Logical Indexing – Example 1

This example creates logical array B that satisfies the condition A > 0.5, and uses the
positions of ones in B to index into A:

rng(0,'twister');     % Reset the random number generator
A = rand(5);
B = A > 0.5;
A(B) = 0
A =

         0    0.0975    0.1576    0.1419         0
         0    0.2785         0    0.4218    0.0357
    0.1270         0         0         0         0
         0         0    0.4854         0         0
         0         0         0         0         0

A simpler way to express this is

A(A > 0.5) = 0
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Logical Indexing – Example 2

The next example highlights the location of the prime numbers in a magic square using
logical indexing to set the nonprimes to 0:

A = magic(4)
A =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

B = isprime(A)
B =

  4×4 logical array

   0   1   1   1
   1   1   0   0
   0   1   0   0
   0   0   0   0
A(~B) = 0;                       % Logical indexing

A
A =
     0     2     3    13
     5    11     0     0
     0     7     0     0
     0     0     0     0

find(B)
ans =
     2
     5
     6
     7
     9
    13

Logical Indexing with a Smaller Array

In most cases, the logical indexing array should have the same number of elements as
the array being indexed into, but this is not a requirement. The indexing array may have
smaller (but not larger) dimensions:
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A = [1 2 3;4 5 6;7 8 9]
A =
     1     2     3
     4     5     6
     7     8     9

B = logical([0 1 0; 1 0 1])
B =

  2×3 logical array

   0   1   0
   1   0   1

isequal(numel(A), numel(B))
ans =

  logical

   0

A(B)
ans =
     4
     7
     8

MATLAB treats the missing elements of the indexing array as if they were present and
set to zero, as in array C below:

% Add zeros to indexing array C to give it the same number of 
% elements as A.
C = logical([B(:);0;0;0]);

isequal(numel(A), numel(C))
ans =

  logical

   1

A(C)
ans =
     4
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     7
     8

Single-Colon Indexing with Different Array Types
When you index into a standard MATLAB array using a single colon, MATLAB returns a
column vector (see variable n, below). When you index into a structure or cell array using
a single colon, you get a comma-separated list (see “Access Data in a Structure Array”
and “Access Data in Cell Array” for more information.)

Create three types of arrays:
n = [1 2 3; 4 5 6];
c = {1 2; 3 4};
s = cell2struct(c, {'a', 'b'}, 1);  s(:,2)=s(:,1);

Use single-colon indexing on each:
n(:)              c{:}             s(:).a
ans =             ans =            ans =
     1                 1                1
     4            ans =            ans =
     2                 3                2
     5            ans =            ans =
     3                 2                1
     6            ans =            ans =
                       4                2

Indexing on Assignment
When assigning values from one matrix to another matrix, you can use any of the styles
of indexing covered in this section. Matrix assignment statements also have the following
requirement.

In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, etc. may be scalar,
vector, or array, provided that all of the following are true:

• The number of subscripts specified for B, not including trailing subscripts equal to 1,
does not exceed ndims(B).

• The number of nonscalar subscripts specified for A equals the number of nonscalar
subscripts specified for B. For example, A(5, 1:4, 1, 2) = B(5:8) is valid
because both sides of the equation use one nonscalar subscript.
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• The order and length of all nonscalar subscripts specified for A matches the order and
length of nonscalar subscripts specified for B. For example, A(1:4, 3, 3:9) =
B(5:8, 1:7) is valid because both sides of the equation (ignoring the one scalar
subscript 3) use a 4-element subscript followed by a 7-element subscript.

See Also

Related Examples
• “Access Data Using Categorical Arrays”
• “Access Data in a Table”
• “Access Data in a Structure Array”
• “Access Data in Cell Array”
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Getting Information About a Matrix
In this section...
“Dimensions of the Matrix” on page 1-22
“Classes Used in the Matrix” on page 1-23
“Data Structures Used in the Matrix” on page 1-24

Dimensions of the Matrix
These functions return information about the shape and size of a matrix.
Function Description
length Return the length of the longest dimension. (The length of a matrix or

array with any zero dimension is zero.)
ndims Return the number of dimensions.
numel Return the number of elements.
size Return the length of each dimension.

The following examples show some simple ways to use these functions. Both use the 3-
by-5 matrix A shown here:

A = 10*gallery('uniformdata',[5],0);
A(4:5, :) = []
A =
    9.5013    7.6210    6.1543    4.0571    0.5789
    2.3114    4.5647    7.9194    9.3547    3.5287
    6.0684    0.1850    9.2181    9.1690    8.1317

Example Using numel

Using the numel function, find the average of all values in matrix A:

sum(A(:))/numel(A)
ans =
    5.8909

Example Using ndims, numel, and size

Using ndims and size, go through the matrix and find those values that are between 5
and 7, inclusive:
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if ndims(A) ~= 2
   return
end

[rows cols] = size(A);
for m = 1:rows
   for n = 1:cols
      x = A(m, n);
      if x >= 5 && x <= 7
         disp(sprintf('A(%d, %d) = %5.2f', m, n, A(m,n)))
      end
   end
end

The code returns the following:

A(1, 3) =  6.15
A(3, 1) =  6.07

Classes Used in the Matrix

These functions test elements of a matrix for a specific data type.
Function Description
isa Detect if input is of a given data type.
iscell Determine if input is a cell array.
iscellstr Determine if input is a cell array of strings.
ischar Determine if input is a character array.
isfloat Determine if input is a floating-point array.
isinteger Determine if input is an integer array.
islogical Determine if input is a logical array.
isnumeric Determine if input is a numeric array.
isreal Determine if input is an array of real numbers.
isstruct Determine if input is a MATLAB structure array.

Example Using isnumeric and isreal

Pick out the real numeric elements from this vector:
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A = [5+7i 8/7 4.23 39j pi 9-2i];

for m = 1:numel(A)
   if isnumeric(A(m)) && isreal(A(m))
      disp(A(m))
   end
end

The values returned are

    1.1429
    4.2300
    3.1416

Data Structures Used in the Matrix

These functions test elements of a matrix for a specific data structure.
Function Description
isempty Determine if input has any dimension with size zero.
isscalar Determine if input is a 1-by-1 matrix.
issparse Determine if input is a sparse matrix.
isvector Determine if input is a 1-by-n or n-by-1 matrix.
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Resizing and Reshaping Matrices
In this section...
“Expanding the Size of a Matrix” on page 1-25
“Delete Matrix Rows and Columns” on page 1-29
“Reshaping a Matrix” on page 1-30
“Preallocating Memory” on page 1-32

Expanding the Size of a Matrix

You can expand the size of any existing matrix as long as doing so does not give the
resulting matrix an irregular shape. (See “Keeping Matrices Rectangular” on page 1-6).
For example, you can vertically combine a 4-by-3 matrix and 7-by-3 matrix because all
rows of the resulting matrix have the same number of columns (3).

Two ways of expanding the size of an existing matrix are

• Concatenating new elements onto the matrix
• Storing to a location outside the bounds of the matrix

Note If you intend to expand the size of a matrix repeatedly over time as it requires more
room (usually done in a programming loop), it is advisable to preallocate space for the
matrix when you initially create it. See “Preallocating Memory” on page 1-32.

Concatenating Onto the Matrix

Concatenation is most useful when you want to expand a matrix by adding new elements
or blocks that are compatible in size with the original matrix. This means that the size of
all matrices being joined along a specific dimension must be equal along that dimension.
See “Concatenating Matrices” on page 1-6.

This example runs a user-defined function compareResults on the data in matrices
stats04 and stats03. Each time through the loop, it concatenates the results of this
function onto the end of the data stored in comp04:

col = 10;
comp04 = [];
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for k = 1:50
   t = compareResults(stats04(k,1:col), stats03(k,1:col));
   comp04 = [comp04; t];
end

Concatenating to a Structure or Cell Array

You can add on to arrays of structures or cells in the same way as you do with ordinary
matrices. This example creates a 3-by-8 matrix of structures S, each having 3 fields: x, y,
and z, and then concatenates a second structure matrix S2 onto the original:

Create a 3-by-8 structure array S:

for k = 1:24
   S(k) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);
end
S = reshape(S, 3, 8);

Create a second array that is 3-by-2 and uses the same field names:

for k = 25:30
   S2(k-24) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);
end
S2= reshape(S2, 3, 2);

Concatenate S2 onto S along the horizontal dimension:

S = [S S2]
S = 

3x10 struct array with fields:

    x
    y
    z

Adding Smaller Blocks to a Matrix

To add one or more elements to a matrix where the sizes are not compatible, you can
often just store the new elements outside the boundaries of the original matrix. The
MATLAB software automatically pads the matrix with zeros to keep it rectangular.
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Construct a 3-by-5 matrix, and attempt to add a new element to it using concatenation.
The operation fails because you are attempting to join a one-column matrix with one that
has five columns:
A = [ 10  20  30  40  50; ...
      60  70  80  90 100; ...
     110 120 130 140 150];

A = [A; 160]
Error using vertcat
CAT arguments dimensions are not consistent.

Try this again, but this time do it in such a way that enables MATLAB to make
adjustments to the size of the matrix. Store the new element in row 4, a row that does
not yet exist in this matrix. MATLAB expands matrix A by an entire new row by padding
columns 2 through 5 with zeros:
A(4,1) = 160
A =
    10    20    30    40    50
    60    70    80    90   100
   110   120   130   140   150
   160     0     0     0     0

Note Attempting to read from nonexistent matrix locations generates an error. You can
only write to these locations.

You can also expand the matrix by adding a matrix instead of just a single element:
A(4:6,1:3) = magic(3)+100
A =
    10    20    30    40    50
    60    70    80    90   100
   110   120   130   140   150
   108   101   106     0     0
   103   105   107     0     0
   104   109   102     0     0

You do not have to add new elements sequentially. Wherever you store the new elements,
MATLAB pads with zeros to make the resulting matrix rectangular in shape:
A(4,8) = 300
A =
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    10    20    30    40    50     0     0     0
    60    70    80    90   100     0     0     0
   110   120   130   140   150     0     0     0
     0     0     0     0     0     0     0   300

Expanding a Structure or Cell Array

You can expand a structure or cell array in the same way that you can a matrix. This
example adds an additional cell to a cell array by storing it beyond the bounds of the
original array. MATLAB pads the data structure with empty cells ([]) to keep it
rectangular.

The original array is 2-by-3:
C = {'Madison', 'G', [5 28 1967]; ...
     46, '325 Maple Dr', 3015.28}
C =

  2×3 cell array

    'Madison'    'G'               [1×3 double]
    [     46]    '325 Maple Dr'    [3.0153e+03]

Add a cell to C{3,1} and MATLAB appends an entire row:

C{3,1} = ...
struct('Fund_A', .45, 'Fund_E', .35, 'Fund_G', 20)
C =

  3×3 cell array

    'Madison'       'G'               [1×3 double]
    [        46]    '325 Maple Dr'    [3.0153e+03]
    [1×1 struct]                []              []

Expanding a Character Array

You can expand character arrays in the same manner as other MATLAB arrays, but it is
generally not recommended. MATLAB expands any array by padding uninitialized
elements with zeros. Because zero is interpreted by MATLAB and some other
programming languages as the end of a character array, you may find that some
functions treat the expanded character array as if it were less than its full length.

Expand a 1-by-5 character vector to twelve characters. The result appears at first to be a
typical character vector:
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greeting = 'Hello';    greeting(1,8:12) = 'World'
greeting =
   Hello  World

Closer inspection however reveals zeros at the point of expansion:

uint8(greeting)
ans =

  1×12 uint8 row vector

    72   101   108   108   111     0     0    87   111   114   108   100

This causes some functions, like strcmp, to return what might be considered an
unexpected result:

strcmp(greeting, 'Hello  World')
ans =

  logical

   0

Delete Matrix Rows and Columns

You can delete rows and columns from a matrix by assigning the empty array [] to those
rows or columns. Start with

A = magic(4)
A =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

Then, delete the second column of A using

A(:,2) = []

This changes matrix A to

A = 
   16    3   13
    5   10    8
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    9    6   12
    4   15    1

If you delete a single element from a matrix, the result is not a matrix anymore. So
expressions like

A(1,2) = []

result in an error. However, you can use linear indexing to delete a single element, or a
sequence of elements. This reshapes the remaining elements into a row vector:

A(2:2:10) = []

results in

A = 
    16     9     3     6    13    12     1

Reshaping a Matrix

The following functions change the shape of a matrix.
Function Description
reshape Modify the shape of a matrix.
rot90 Rotate the matrix by 90 degrees.
fliplr Flip the matrix about a vertical axis.
flipud Flip the matrix about a horizontal axis.
flip Flip the matrix along the specified direction.
transpose Flip a matrix about its main diagonal, turning row vectors into

column vectors and vice versa.
ctranspose Transpose a matrix and replace each element with its complex

conjugate.

Examples

Here are a few examples to illustrate some of the ways you can reshape matrices.
Reshaping a Matrix

Reshape 3-by-4 matrix A to have dimensions 2-by-6:
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A = [1 4 7 10; 2 5 8 11; 3 6 9 12]
A =
    1    4    7    10
    2    5    8    11
    3    6    9    12

B = reshape(A, 2, 6)
B =
    1    3    5    7    9   11
    2    4    6    8   10   12

Transposing a Matrix

Transpose A so that the row elements become columns. You can use either the
transpose function or the transpose operator (.') to do this:

B = A.'
B =
     1     2     3
     4     5     6
     7     8     9
    10    11    12

There is a separate function called ctranspose that performs a complex conjugate
transpose of a matrix. The equivalent operator for ctranpose on a matrix A is A':

A = [1+9i 2-8i 3+7i; 4-6i 5+5i 6-4i]
A =
   1.0000 + 9.0000i   2.0000 - 8.0000i   3.0000 + 7.0000i
   4.0000 - 6.0000i   5.0000 + 5.0000i   6.0000 - 4.0000i

B = A'
B =
   1.0000 - 9.0000i   4.0000 + 6.0000i
   2.0000 + 8.0000i   5.0000 - 5.0000i
   3.0000 - 7.0000i   6.0000 + 4.0000i

Rotating a Matrix

Rotate the matrix by 90 degrees:

B = rot90(A)
B =
    10    11    12
     7     8     9

 Resizing and Reshaping Matrices

1-31



     4     5     6
     1     2     3

Flipping a Matrix

Flip A in a left-to-right direction:

B = fliplr(A)
B =
    10     7     4     1
    11     8     5     2
    12     9     6     3

Preallocating Memory
Repeatedly expanding the size of an array over time, (for example, adding more elements
to it each time through a programming loop), can adversely affect the performance of
your program. This is because

• MATLAB has to spend time allocating more memory each time you increase the size
of the array.

• This newly allocated memory is likely to be noncontiguous, thus slowing down any
operations that MATLAB needs to perform on the array.

The preferred method for sizing an array that is expected to grow over time is to estimate
the maximum possible size for the array, and preallocate this amount of memory for it at
the time the array is created. In this way, your program performs one memory allocation
that reserves one contiguous block.

The following command preallocates enough space for a 25,000 by 10,000 matrix, and
initializes each element to zero:

A = zeros(25000, 10000);

Building a Preallocated Array

Once memory has been preallocated for the maximum estimated size of the array, you
can store your data in the array as you need it, each time appending to the existing data.
This example preallocates a large array, and then reads blocks of data from a file into the
array until it gets to the end of the file:

blocksize = 5000;
maxrows = 2500000; cols = 20;
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rp = 1;     % row pointer

% Preallocate A to its maximum possible size
A = zeros(maxrows, cols);

% Open the data file, saving the file pointer.
fid = fopen('statfile.dat', 'r');
 
while true
   % Read from file into a cell array.  Stop at EOF.
   block = textscan(fid, '%n', blocksize*cols);
   if isempty(block{1})   break,   end;
 
   % Convert cell array to matrix, reshape, place into A.
   A(rp:rp+blocksize-1, 1:cols) = ...
      reshape(cell2mat(block), blocksize, cols);
 
   % Process the data in A.
   evaluate_stats(A);               % User-defined function
 
   % Update row pointer
   rp = rp + blocksize;
end

Note If you eventually need more room in a matrix than you had preallocated, you can
preallocate additional storage in the same manner, and concatenate this additional
storage onto the original array.
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Shifting and Sorting Matrices
In this section...
“Shift and Sort Functions” on page 1-34
“Shifting the Location of Matrix Elements” on page 1-34
“Sorting the Data in Each Column” on page 1-35
“Sorting the Data in Each Row” on page 1-36
“Sorting Row Vectors” on page 1-37

Shift and Sort Functions
Use these functions to shift or sort the elements of a matrix.
Function Description
circshift Circularly shift matrix contents.
sort Sort array elements in ascending or descending order.
sortrows Sort rows in ascending order.
issorted Determine if matrix elements are in sorted order.

You can sort matrices, multidimensional arrays, and cell arrays of character vectors
along any dimension and in ascending or descending order of the elements. The sort
functions also return an optional array of indices showing the order in which elements
were rearranged during the sorting operation.

Shifting the Location of Matrix Elements
The circshift function shifts the elements of a matrix in a circular manner along one
or more dimensions. Rows or columns that are shifted out of the matrix circulate back
into the opposite end. For example, shifting a 4-by-7 matrix one place to the left moves
the elements in columns 2 through 7 to columns 1 through 6, and moves column 1 to
column 7.

Create a 5-by-8 matrix named A and shift it to the right along the second (horizontal)
dimension by three places (you would use [0,-3] to shift to the left by three places):

A = [1:8; 11:18; 21:28; 31:38; 41:48]
A =
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     1     2     3     4     5     6     7     8
    11    12    13    14    15    16    17    18
    21    22    23    24    25    26    27    28
    31    32    33    34    35    36    37    38
    41    42    43    44    45    46    47    48

B = circshift(A, [0, 3])
B =
     6     7     8     1     2     3     4     5
    16    17    18    11    12    13    14    15
    26    27    28    21    22    23    24    25
    36    37    38    31    32    33    34    35
    46    47    48    41    42    43    44    45

Now take A and shift it along both dimensions: three columns to the right and two rows
up:
A = [1:8; 11:18; 21:28; 31:38; 41:48];

B = circshift(A, [-2, 3])
B =
    26    27    28    21    22    23    24    25
    36    37    38    31    32    33    34    35
    46    47    48    41    42    43    44    45
     6     7     8     1     2     3     4     5
    16    17    18    11    12    13    14    15

Since circshift circulates shifted rows and columns around to the other end of a
matrix, shifting by the exact size of A returns all rows and columns to their original
location:
B = circshift(A, size(A));

all(B(:) == A(:))          % Do all elements of B equal A?
ans =

  logical

   1                    % Yes

Sorting the Data in Each Column
The sort function sorts matrix elements along a specified dimension. The syntax for the
function is
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sort(matrix, dimension)

To sort the columns of a matrix, specify 1 as the dimension argument. To sort along
rows, specify dimension as 2.

This example makes a 6-by-7 arbitrary test matrix:

A = floor(gallery('uniformdata',[6 7],0)*100)
A =
    95    45    92    41    13     1    84
    23     1    73    89    20    74    52
    60    82    17     5    19    44    20
    48    44    40    35    60    93    67
    89    61    93    81    27    46    83
    76    79    91     0    19    41     1

Sort each column of A in ascending order:

c = sort(A, 1)
c =
    23     1    17     0    13     1     1
    48    44    40     5    19    41    20
    60    45    73    35    19    44    52
    76    61    91    41    20    46    67
    89    79    92    81    27    74    83
    95    82    93    89    60    93    84

issorted(c(:, 1))
ans =
  logical
   1

Sorting the Data in Each Row

Use issorted to sort data in each row. Using the example above, if you sort each row of
A in descending order, issorted tests for an ascending sequence. You can flip the vector
to test for a sorted descending sequence:

A = floor(gallery('uniformdata',[6 7],0)*100);

r = sort(A, 2, 'descend')
r =
    95    92    84    45    41    13     1
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    89    74    73    52    23    20     1
    82    60    44    20    19    17     5
    93    67    60    48    44    40    35
    93    89    83    81    61    46    27
    91    79    76    41    19     1     0

issorted(fliplr(r(1, :)))
ans =
  logical
   1

When you specify a second output, sort returns the indices of the original matrix A
positioned in the order they appear in the output matrix.

[r,index] = sort(A, 2, 'descend');
index
index =
     1     3     7     2     4     5     6
     4     6     3     7     1     5     2
     2     1     6     7     5     3     4
     6     7     5     1     2     3     4
     3     1     7     4     2     6     5
     3     2     1     6     5     7     4

The second row of index contains the sequence, 4 6 3 7 1 5 2, which means that the
second row of matrix r is comprised of A(2,4), A(2,6), A(2,3), A(2,7), A(2,1),
A(2,5), and A(2,2).

Sorting Row Vectors

The sortrows function sorts the entire row of a matrix according to the elements in a
specified column, maintaining the order of elements in each row.

For example, create a random matrix A:

A = floor(gallery('uniformdata',[6 7],0)*100);
A =
    95    45    92    41    13     1    84
    23     1    73    89    20    74    52
    60    82    17     5    19    44    20
    48    44    40    35    60    93    67
    89    61    93    81    27    46    83
    76    79    91     0    19    41     1
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Use the sortrows function to sort the rows of A in ascending order according to the
values in the first column:

r = sortrows(A,1)
r =
    23     1    73    89    20    74    52
    48    44    40    35    60    93    67
    60    82    17     5    19    44    20
    76    79    91     0    19    41     1
    89    61    93    81    27    46    83
    95    45    92    41    13     1    84

Now sort the rows of A in ascending order according to the values in the fourth column:

r = sortrows(A,4)
r =
    76    79    91     0    19    41     1
    60    82    17     5    19    44    20
    48    44    40    35    60    93    67
    95    45    92    41    13     1    84
    89    61    93    81    27    46    83
    23     1    73    89    20    74    52
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Operating on Diagonal Matrices
In this section...
“Diagonal Matrix Functions” on page 1-39
“Constructing a Matrix from a Diagonal Vector” on page 1-39
“Returning a Triangular Portion of a Matrix” on page 1-40
“Concatenating Matrices Diagonally” on page 1-40

Diagonal Matrix Functions
There are several MATLAB functions that work specifically on diagonal matrices.
Function Description
blkdiag Construct a block diagonal matrix from input arguments.
diag Return a diagonal matrix or the diagonals of a matrix.
trace Compute the sum of the elements on the main diagonal.
tril Return the lower triangular part of a matrix.
triu Return the upper triangular part of a matrix.

Constructing a Matrix from a Diagonal Vector
The diag function has two operations that it can perform. You can use it to generate a
diagonal matrix:

A = diag([12:4:32])
A =
    12     0     0     0     0     0
     0    16     0     0     0     0
     0     0    20     0     0     0
     0     0     0    24     0     0
     0     0     0     0    28     0
     0     0     0     0     0    32

You can also use the diag function to scan an existing matrix and return the values
found along one of the diagonals:

A = magic(5)
A =
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    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

diag(A, 2)       % Return contents of second diagonal of A
ans =
     1
    14
    22

Returning a Triangular Portion of a Matrix

The tril and triu functions return a triangular portion of a matrix, the former
returning the piece from the lower left and the latter from the upper right. By default,
the main diagonal of the matrix divides these two segments. You can use an alternate
diagonal by specifying an offset from the main diagonal as a second input argument:

A = magic(6);

B = tril(A, -1)
B =
     0     0     0     0     0     0
     3     0     0     0     0     0
    31     9     0     0     0     0
     8    28    33     0     0     0
    30     5    34    12     0     0
     4    36    29    13    18     0

Concatenating Matrices Diagonally

You can diagonally concatenate matrices to form a composite matrix using the blkdiag
function. See “Creating a Block Diagonal Matrix” on page 1-8 for more information on
how this works.
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Empty Matrices, Scalars, and Vectors
In this section...
“Overview” on page 1-41
“The Empty Matrix” on page 1-42
“Scalars” on page 1-44
“Vectors” on page 1-45

Overview

Although matrices are two dimensional, they do not always appear to have a rectangular
shape. A 1-by-8 matrix, for example, has two dimensions yet is linear. These matrices are
described in the following sections:

• “The Empty Matrix” on page 1-42

An empty matrix has one or more dimensions that are equal to zero. A two-
dimensional matrix with both dimensions equal to zero appears in the MATLAB
application as []. The expression A = [] assigns a 0-by-0 empty matrix to A.

• “Scalars” on page 1-44

A scalar is 1-by-1 and appears in MATLAB as a single real or complex number (e.g.,
7, 583.62, -3.51, 5.46097e-14, 83+4i).

• “Vectors” on page 1-45

A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or column of real or
complex numbers:

     Column Vector                 Row Vector

         53.2                  53.2 87.39 4-12i 43.9
         87.39
         4-12i
         43.9
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The Empty Matrix

A matrix having at least one dimension equal to zero is called an empty matrix. The
simplest empty matrix is 0-by-0 in size. Examples of more complex matrices are those of
dimension 0-by-5 or 10-by-0.

To create a 0-by-0 matrix, use the square bracket operators with no value specified:

A = [];

whos A
  Name      Size            Bytes  Class     Attributes

  A         0x0                 0  double 

You can create empty matrices (and arrays) of other sizes using the zeros, ones, rand,
or eye functions. To create a 0-by-5 matrix, for example, use

A = zeros(0,5)
A =

  0×5 empty double matrix

Operating on an Empty Matrix

The basic model for empty matrices is that any operation that is defined for m-by-n
matrices, and that produces a result whose dimension is some function of m and n, should
still be allowed when m or n is zero. The size of the result of this operation is consistent
with the size of the result generated when working with nonempty values, but instead is
evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is m-by-p,
then C is m-by-(n+p). This is still true if m, n, or p is zero.
Common Operations

The following operations return zero on an empty array:

A = [];
size(A), length(A), numel(A), any(A), sum(A)
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These operations return a nonzero value on an empty array :
A = [];
ndims(A), isnumeric(A), isreal(A), isfloat(A), isempty(A), ...
   all(A), prod(A)

Using Empty Matrices in Relational Operations

You can use empty matrices in relational operations such as “equal to” (==) or “greater
than” (>) as long as both operands have the same dimensions, or the nonempty operand
is scalar. The result of any relational operation involving an empty matrix is the empty
matrix. Even comparing an empty matrix for equality to itself does not return true, but
instead yields an empty matrix:
x = ones(0,3);
y = x;

y == x
ans =

  0×3 empty logical array

Using Empty Matrices in Logical Operations

MATLAB has two distinct types of logical operators:

• Short-circuit (&&, ||) — Used in testing multiple logical conditions (e.g., x >= 50 &&
x < 100) where each condition evaluates to a scalar true or false.

• Element-wise (&, |) — Performs a logical AND, OR, or NOT on each element of a
matrix or array.

Short-circuit Operations

The rule for operands used in short-circuit operations is that each operand must be
convertible to a logical scalar value. Because of this rule, empty matrices cannot be used
in short-circuit logical operations. Such operations return an error.

The only exception is in the case where MATLAB can determine the result of a logical
statement without having to evaluate the entire expression. This is true for the following
two statements because the result of the entire statements are known by considering just
the first term:
true || []
ans =
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  logical

   1

false && []
ans =

  logical

   0
Element-wise Operations

Unlike the short-circuit operators, all element-wise operations on empty matrices are
considered valid as long as the dimensions of the operands agree, or the nonempty
operand is scalar. Element-wise operations on empty matrices always return an empty
matrix:
true | []
ans =

  0×0 empty logical array

Note This behavior is consistent with the way MATLAB does scalar expansion with
binary operators, wherein the nonscalar operand determines the size of the result.

Scalars
Any individual real or complex number is represented in MATLAB as a 1-by-1 matrix
called a scalar value:
A = 5;

ndims(A)        % Check number of dimensions in A
ans =
     2

size(A)         % Check value of row and column dimensions
ans =
     1     1

Use the isscalar function to tell if a variable holds a scalar value:
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isscalar(A)
ans =

  logical

   1

Vectors

Matrices with one dimension equal to one and the other greater than one are called
vectors. Here is an example of a numeric vector:

A = [5.73 2-4i 9/7 25e3 .046 sqrt(32) 8j];

size(A)         % Check value of row and column dimensions
ans =
     1     7

You can construct a vector out of other vectors, as long as the critical dimensions agree.
All components of a row vector must be scalars or other row vectors. Similarly, all
components of a column vector must be scalars or other column vectors:

A = [29 43 77 9 21];
B = [0 46 11];

C = [A 5 ones(1,3) B]
C =
   29   43   77    9   21    5    1    1    1    0   46   11

Concatenating an empty matrix to a vector has no effect on the resulting vector. The
empty matrix is ignored in this case:

A = [5.36; 7.01; []; 9.44]
A =
    5.3600
    7.0100
    9.4400

Use the isvector function to tell if a variable holds a vector:

isvector(A)
ans =

  logical
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   1
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Multidimensional Arrays
In this section...
“Overview” on page 1-47
“Creating Multidimensional Arrays” on page 1-49
“Accessing Multidimensional Array Properties” on page 1-52
“Indexing Multidimensional Arrays” on page 1-52
“Reshaping Multidimensional Arrays” on page 1-56
“Permuting Array Dimensions” on page 1-58
“Computing with Multidimensional Arrays” on page 1-60
“Organizing Data in Multidimensional Arrays” on page 1-62
“Multidimensional Cell Arrays” on page 1-63
“Multidimensional Structure Arrays” on page 1-64

Overview

An array having more than two dimensions is called a multidimensional array in the
MATLAB application. Multidimensional arrays in MATLAB are an extension of the
normal two-dimensional matrix. Matrices have two dimensions: the row dimension and
the column dimension.

You can access a two-dimensional matrix element with two subscripts: the first
representing the row index, and the second representing the column index.

Multidimensional arrays use additional subscripts for indexing. A three-dimensional
array, for example, uses three subscripts:

• The first references array dimension 1, the row.
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• The second references dimension 2, the column.
• The third references dimension 3. This illustration uses the concept of a page to

represent dimensions 3 and higher.

To access the element in the second row, third column of page 2, for example, you use the
subscripts (2,3,2).

As you add dimensions to an array, you also add subscripts. A four-dimensional array,
for example, has four subscripts. The first two reference a row-column pair; the second
two access the third and fourth dimensions of data.

Most of the operations that you can perform on matrices (i.e., two-dimensional arrays)
can also be done on multidimensional arrays.

Note The general multidimensional array functions reside in the datatypes directory.
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Creating Multidimensional Arrays

You can use the same techniques to create multidimensional arrays that you use for two-
dimensional matrices. In addition, MATLAB provides a special concatenation function
that is useful for building multidimensional arrays.

This section discusses

• “Creating and Extending Multidimensional Arrays Using Indexed Assignment”
on page 1-49

• “Generating Arrays Using MATLAB Functions” on page 1-50
• “Building Multidimensional Arrays with the cat Function” on page 1-51

Creating and Extending Multidimensional Arrays Using Indexed Assignment

You can create a multidimensional array by creating a 2-D array and extending it.
Create a 2-D array A and extend A to a 3-D array using indexed assignment:

A = [5 7 8; 0 1 9; 4 3 6];
A(:,:,2) = [1 0 4; 3 5 6; 9 8 7]

A(:,:,1) =
     5     7     8
     0     1     9
     4     3     6

A(:,:,2) =
     1     0     4
     3     5     6
     9     8     7

You can extend an array by assigning a single value to the new elements. MATLAB
expands the scalar value to match the dimensions of the addressed elements. This
expansion is called scalar expansion.

Extend A by a third page using scalar expansion.

A(:,:,3) = 5

A(:,:,1) =
     5     7     8
     0     1     9
     4     3     6
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A(:,:,2) =
     1     0     4
     3     5     6
     9     8     7
A(:,:,3) =
     5     5     5
     5     5     5
     5     5     5

To extend the rows, columns, or pages of an array, use similar assignment statements.
The dimensions of arrays on the right side and the left side of the assignment must be
the same.

Extend A into a 3-by-3-by-3-by-2, four-dimensional array. In the first assignment,
MATLAB pads A to fill the unassigned elements in the extended dimension with zeros.
The second and third assignments replace the zeros with the specified values.

A(:,:,1,2) = [1 2 3; 4 5 6; 7 8 9];
A(:,:,2,2) = [9 8 7; 6 5 4; 3 2 1];
A(:,:,3,2) = [1 0 1; 1 1 0; 0 1 1];

Generating Arrays Using MATLAB Functions

You can use MATLAB functions such as randn, ones, and zeros to generate
multidimensional arrays in the same way you use them for two-dimensional arrays. Each
argument you supply represents the size of the corresponding dimension in the resulting
array. For example, to create a 4-by-3-by-2 array of normally distributed random
numbers:

B = randn(4,3,2)

To generate an array filled with a single constant value, use the repmat function.
repmat replicates an array (in this case, a 1-by-1 array) through a vector of array
dimensions.

B = repmat(5, [3 4 2])

B(:,:,1) =
     5     5     5     5
     5     5     5     5
     5     5     5     5

B(:,:,2) =
     5     5     5     5
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     5     5     5     5
     5     5     5     5

Note Any dimension of an array can have size zero, making it a form of empty array. For
example, 10-by-0-by-20 is a valid size for a multidimensional array.

Building Multidimensional Arrays with the cat Function

The cat function is a simple way to build multidimensional arrays; it concatenates a list
of arrays along a specified dimension:

B = cat(dim, A1, A2...)

where A1, A2, and so on are the arrays to concatenate, and dim is the dimension along
which to concatenate the arrays.

For example, to create a new array with cat:

B = cat(3, [2 8; 0 5], [1 3; 7 9])

B(:,:,1) =
     2     8
     0     5

B(:,:,2) =
     1     3
     7     9

The cat function accepts any combination of existing and new data. In addition, you can
nest calls to cat. The lines below, for example, create a four-dimensional array.

A = cat(3, [9 2; 6 5], [7 1; 8 4])
B = cat(3, [3 5; 0 1], [5 6; 2 1])
D = cat(4, A, B, cat(3, [1 2; 3 4], [4 3;2 1]))

cat automatically adds subscripts of 1 between dimensions, if necessary. For example, to
create a 2-by-2-by-1-by-2 array, enter

C = cat(4, [1 2; 4 5], [7 8; 3 2])

In the previous case, cat inserts as many singleton dimensions as needed to create a
four-dimensional array whose last dimension is not a singleton dimension. If the dim
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argument had been 5, the previous statement would have produced a 2-by-2-by-1-by-1-
by-2 array. This adds additional 1s to indexing expressions for the array. To access the
value 8 in the four-dimensional case, use

Accessing Multidimensional Array Properties

You can use the following MATLAB functions to get information about multidimensional
arrays you have created.

• size — Returns the size of each array dimension.

size(C)
ans =
    2      2      1      2
  rows  columns  dim3   dim4

• ndims — Returns the number of dimensions in the array.

ndims(C)
ans =
    4

• whos — Provides information on the format and storage of the array.

whos
Name     Size       Bytes   Class

A        2x2x2         64   double array
B        2x2x2         64   double array
C        4-D           64   double array
D        4-D          192   double array

Grand total is 48 elements using 384 bytes

Indexing Multidimensional Arrays

Many of the concepts that apply to two-dimensional matrices extend to multidimensional
arrays as well.
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To access a single element of a multidimensional array, use integer subscripts. Each
subscript indexes a dimension—the first indexes the row dimension, the second indexes
the column dimension, the third indexes the first page dimension, and so on.

Consider a 10-by-5-by-3 array nddata of random integers:

nddata = fix(8 * randn(10,5,3));

To access element (3,2) on page 2 of nddata, for example, use nddata(3,2,2).

You can use vectors as array subscripts. In this case, each vector element must be a valid
subscript, that is, within the bounds defined by the dimensions of the array. To access
elements (2,1), (2,3), and (2,4) on page 3 of nddata, use

nddata(2,[1 3 4],3);

The Colon and Multidimensional Array Indexing

The MATLAB colon indexing extends to multidimensional arrays. For example, to access
the entire third column on page 2 of nddata, use nddata(:,3,2).

The colon operator is also useful for accessing other subsets of data. For example,
nddata(2:3,2:3,1) results in a 2-by-2 array, a subset of the data on page 1 of nddata.
This matrix consists of the data in rows 2 and 3, columns 2 and 3, on the first page of the
array.

The colon operator can appear as an array subscript on both sides of an assignment
statement. For example, to create a 4-by-4 array of zeros:

C = zeros(4, 4)

Now assign a 2-by-2 subset of array nddata to the four elements in the center of C.

C(2:3,2:3) = nddata(2:3,1:2,2)

Linear Indexing with Multidimensional Arrays

MATLAB linear indexing also extends to multidimensional arrays. In this case,
MATLAB operates on a page-by-page basis to create the storage column, again
appending elements columnwise. See “Linear Indexing” on page 1-12 for an introduction
to this topic.

For example, consider a 5-by-4-by-3-by-2 array C.
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Again, a single subscript indexes directly into this column. For example, C(4) produces
the result
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ans =
     0

If you specify two subscripts (i,j) indicating row-column indices, MATLAB calculates
the offset as described above. Two subscripts always access the first page of a
multidimensional array, provided they are within the range of the original array
dimensions.

If more than one subscript is present, all subscripts must conform to the original array
dimensions. For example, C(6,2) is invalid because all pages of C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing scheme
accordingly. For example, consider four subscripts (i,j,k,l) into a four-dimensional
array with size [d1 d2 d3 d4]. MATLAB calculates the offset into the storage column
by

(l-1)(d3)(d2)(d1)+(k-1)(d2)(d1)+(j-1)(d1)+i

For example, if you index the array C using subscripts (3, 4, 2, 1), MATLAB returns the
value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d1 d2 d3 ... dn] using
any subscripts (s1 s2 s3 ... sn) is
(sn-1)(dn-1)(dn-2)...(d1)+(sn-1-1)(dn-2)...(d1)+...+(s2-1)(d1)+s1

Because of this scheme, you can index an array using any number of subscripts. You can
append any number of 1s to the subscript list because these terms become zero. For
example,

C(3,2,1,1,1,1,1,1)

is equivalent to

C(3,2)

Avoiding Ambiguity in Multidimensional Indexing

Some assignment statements, such as

A(:,:,2) = 1:10

are ambiguous because they do not provide enough information about the shape of the
dimension to receive the data. In the case above, the statement tries to assign a one-
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dimensional vector to a two-dimensional destination. MATLAB produces an error for
such cases. To resolve the ambiguity, be sure you provide enough information about the
destination for the assigned data, and that both data and destination have the same
shape. For example:

A(1,:,2) = 1:10;

Reshaping Multidimensional Arrays

Unless you change its shape or size, a MATLAB array retains the dimensions specified at
its creation. You change array size by adding or deleting elements. You change array
shape by re-specifying the array's row, column, or page dimensions while retaining the
same elements. The reshape function performs the latter operation. For
multidimensional arrays, its form is

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped matrix.
Note that a reshaped array must have the same number of elements as the original array
(that is, the product of the dimension sizes is constant).
M reshape(M, [6 5])

The reshape function operates in a columnwise manner. It creates the reshaped matrix
by taking consecutive elements down each column of the original data construct.
C reshape(C, [6 2])
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Here are several new arrays from reshaping nddata:

B = reshape(nddata, [6 25])
C = reshape(nddata, [5 3 10])
D = reshape(nddata, [5 3 2 5])

Removing Singleton Dimensions

MATLAB automatically removes trailing singleton dimensions (dimensions whose sizes
are equal to 1) from all multidimensional arrays. For example, if you attempt to create
an array of size 3-by-2-by-1-by-1, perhaps with the command rand(3,2,1,1), then
MATLAB strips away the singleton dimensions at the end of the array and creates a 3-
by-2 matrix. This is because every array technically has an infinite number of trailing
singleton dimensions. A 3-by-2 array is the same as an array with size 3-by-2-by-1-by-1-
by-1-by-...

For example, consider the following 2-by-2 matrix, A.

A = eye(2)

A =

     1     0
     0     1 

A is a 2-by-2 identity matrix.

Find the size of the fourth dimension of A.

size(A,4)

ans =

     1

Although A is a 2-by-2 matrix, the size of the fourth dimension in A is 1. In fact, the size
of each dimension beyond the second is 1.

The first two dimensions of an array are never stripped away, since they are always
relevant.

size(3)

ans =
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     1     1

Even a scalar in MATLAB is a 1-by-1 matrix.

MATLAB creates singleton dimensions if you explicitly specify them when you create or
reshape an array, or if you perform a calculation that results in an array dimension of
one:

B = repmat(5, [2 3 1 4]);

size(B)
ans =
     2     3     1     4

The squeeze function removes singleton dimensions from an array:

C = squeeze(B);

size(C)
ans =
     2     3     4

The squeeze function does not affect two-dimensional arrays; row vectors remain rows.

Permuting Array Dimensions

The permute function reorders the dimensions of an array:

B = permute(A, dims);

dims is a vector specifying the new order for the dimensions of A, where 1 corresponds to
the first dimension (rows), 2 corresponds to the second dimension (columns), 3
corresponds to pages, and so on.
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For a more detailed look at the permute function, consider a four-dimensional array A of
size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the column dimension first,
followed by the second page dimension, the first page dimension, then the row dimension.
The result is a 4-by-2-by-3-by-5 array.

You can think of permute's operation as an extension of the transpose function, which
switches the row and column dimensions of a matrix. For permute, the order of the input
dimension list determines the reordering of the subscripts. In the example above,
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element (4,2,1,2) of A becomes element (2,2,1,4) of B, element (5,4,3,2) of A
becomes element (4,2,3,5) of B, and so on.

Inverse Permutation

The ipermute function is the inverse of permute. Given an input array A and a vector of
dimensions v, ipermute produces an array B such that permute(B,v) returns A.

For example, these statements create an array E that is equal to the input array C:

D = ipermute(C, [1 4 2 3]);
E = permute(D, [1 4 2 3]) 

You can obtain the original array after permuting it by calling ipermute with the same
vector of dimensions.

Computing with Multidimensional Arrays

Many of the MATLAB computational and mathematical functions accept
multidimensional arrays as arguments. These functions operate on specific dimensions of
multidimensional arrays; that is, they operate on individual elements, on vectors, or on
matrices.

Operating on Vectors

Functions that operate on vectors, like sum, mean, and so on, by default typically work on
the first nonsingleton dimension of a multidimensional array. Most of these functions
optionally let you specify a particular dimension on which to operate. There are
exceptions, however. For example, the cross function, which finds the cross product of
two vectors, works on the first nonsingleton dimension having length 3.

Note In many cases, these functions have other restrictions on the input arguments —
for example, some functions that accept multiple arrays require that the arrays be the
same size. Refer to the online help for details on function arguments.

Operating Element-by-Element

MATLAB functions that operate element-by-element on two-dimensional arrays, like the
trigonometric and exponential functions in the elfun directory, work in exactly the same
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way for multidimensional cases. For example, the sin function returns an array the
same size as the function's input argument. Each element of the output array is the sine
of the corresponding element of the input array.

Similarly, the arithmetic, logical, and relational operators all work with corresponding
elements of multidimensional arrays that are the same size in every dimension. If one
operand is a scalar and one an array, the operator applies the scalar to each element of
the array.

Operating on Planes and Matrices

Functions that operate on planes or matrices, such as the linear algebra and matrix
functions in the matfun directory, do not accept multidimensional arrays as arguments.
That is, you cannot use the functions in the matfun directory, or the array operators *, ^,
\, or /, with multidimensional arguments. Supplying multidimensional arguments or
operands in these cases results in an error.

You can use indexing to apply a matrix function or operator to matrices within a
multidimensional array. For example, create a three-dimensional array A:

A = cat(3, [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], ...
    [6 4 7; 6 8 5; 5 4 3]);

Applying the eig function to the entire multidimensional array results in an error:

eig(A)
??? Undefined function or method 'eig' for input 
arguments of type 'double' and attributes 'full 3d real'.

You can, however, apply eig to planes within the array. For example, use colon notation
to index just one page (in this case, the second) of the array:

eig(A(:,:,2))
ans =
   12.9129
   -2.6260
    2.7131

Note In the first case, subscripts are not colons; you must use squeeze to avoid an error.
For example, eig(A(2,:,:)) results in an error because the size of the input is [1 3
3]. The expression eig(squeeze(A(2,:,:))), however, passes a valid two-
dimensional matrix to eig.
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Organizing Data in Multidimensional Arrays
You can use multidimensional arrays to represent data in two ways:

• As planes or pages of two-dimensional data. You can then treat these pages as
matrices.

• As multivariate or multidimensional data. For example, you might have a four-
dimensional array where each element corresponds to either a temperature or air
pressure measurement taken at one of a set of equally spaced points in a room.

For example, consider an RGB image. For a single image, a multidimensional array is
probably the easiest way to store and access data.

To access an entire plane of the image, use

redPlane = RGB(:,:,1);

To access a subimage, use
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subimage = RGB(20:40,50:85,:);

The RGB image is a good example of data that needs to be accessed in planes for
operations like display or filtering. In other instances, however, the data itself might be
multidimensional. For example, consider a set of temperature measurements taken at
equally spaced points in a room. Here the location of each value is an integral part of the
data set—the physical placement in three-space of each element is an aspect of the
information. Such data also lends itself to representation as a multidimensional array.

Now to find the average of all the measurements, use

mean(mean(mean(TEMP)));

To obtain a vector of the “middle” values (element (2,2)) in the room on each page, use

B = TEMP(2,2,:);

Multidimensional Cell Arrays

Like numeric arrays, the framework for multidimensional cell arrays in MATLAB is an
extension of the two-dimensional cell array model. You can use the cat function to build
multidimensional cell arrays, just as you use it for numeric arrays.

For example, create a simple three-dimensional cell array C:

A{1,1} = [1 2;4 5];
A{1,2} = 'Name';
A{2,1} = 2-4i;
A{2,2} = 7;
B{1,1} = 'Name2';
B{1,2} = 3;
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B{2,1} = 0:1:3;
B{2,2} = [4 5]';
C = cat(3, A, B);

The subscripts for the cells of C look like

Multidimensional Structure Arrays

Multidimensional structure arrays are extensions of rectangular structure arrays. Like
other types of multidimensional arrays, you can build them using direct assignment or
the cat function:

patient(1,1,1).name = 'John Doe';
patient(1,1,1).billing = 127.00;
patient(1,1,1).test = [79 75 73; 180 178 177.5; 220 210 205];
patient(1,2,1).name = 'Ann Lane';
patient(1,2,1).billing = 28.50;
patient(1,2,1).test = [68 70 68; 118 118 119; 172 170 169];
patient(1,1,2).name = 'Al Smith';
patient(1,1,2).billing = 504.70;
patient(1,1,2).test = [80 80 80; 153 153 154; 181 190 182];
patient(1,2,2).name = 'Dora Jones';
patient(1,2,2).billing = 1173.90;
patient(1,2,2).test = [73 73 75; 103 103 102; 201 198 200];
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Applying Functions to Multidimensional Structure Arrays

To apply functions to multidimensional structure arrays, operate on fields and field
elements using indexing. For example, find the sum of the columns of the test array in
patient(1,1,2):

sum((patient(1,1,2).test));

Similarly, add all the billing fields in the patient array:

total = sum([patient.billing]);
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Summary of Matrix and Array Functions
This section summarizes the principal functions used in creating and handling matrices.
Most of these functions work on multidimensional arrays as well.
Functions to Create a Matrix

Function Description
[a,b] or [a;b] Create a matrix from specified elements, or concatenate matrices

together.
accumarray Construct a matrix using accumulation.
blkdiag Construct a block diagonal matrix.
cat Concatenate matrices along the specified dimension.
diag Create a diagonal matrix from a vector.
horzcat Concatenate matrices horizontally.
magic Create a square matrix with rows, columns, and diagonals that

add up to the same number.
ones Create a matrix of all ones.
rand Create a matrix of uniformly distributed random numbers.
repmat Create a new matrix by replicating or tiling another.
vertcat Concatenate two or more matrices vertically.
zeros Create a matrix of all zeros.
Functions to Modify the Shape of a Matrix

Function Description
ctranspose Flip a matrix about the main diagonal and replace each element

with its complex conjugate.
flip Flip a matrix along the specified dimension.
fliplr Flip a matrix about a vertical axis.
flipud Flip a matrix about a horizontal axis.
reshape Change the dimensions of a matrix.
rot90 Rotate a matrix by 90 degrees.
transpose Flip a matrix about the main diagonal.
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Functions to Find the Structure or Shape of a Matrix

Function Description
isempty Return true for 0-by-0 or 0-by-n matrices.
isscalar Return true for 1-by-1 matrices.
issparse Return true for sparse matrices.
isvector Return true for 1-by-n matrices.
length Return the length of a vector.
ndims Return the number of dimensions in a matrix.
numel Return the number of elements in a matrix.
size Return the size of each dimension.
Functions to Determine Class

Function Description
iscell Return true if the matrix is a cell array.
ischar Return true if matrix elements are character arrays.
isfloat Determine if input is a floating point array.
isinteger Determine if input is an integer array.
islogical Return true if matrix elements are logicals.
isnumeric Return true if matrix elements are numeric.
isreal Return true if matrix elements are real numbers.
isstruct Return true if matrix elements are MATLAB structures.
Functions to Sort and Shift Matrix Elements

Function Description
circshift Circularly shift matrix contents.
issorted Return true if the matrix elements are sorted.
sort Sort elements in ascending or descending order.
sortrows Sort rows in ascending order.
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Functions That Work on Diagonals of a Matrix

Function Description
blkdiag Construct a block diagonal matrix.
diag Return the diagonals of a matrix.
trace Compute the sum of the elements on the main diagonal.
tril Return the lower triangular part of a matrix.
triu Return the upper triangular part of a matrix.
Functions to Change the Indexing Style

Function Description
ind2sub Convert a linear index to a row-column index.
sub2ind Convert a row-column index to a linear index.
Functions for Working with Multidimensional Arrays

Function Description
cat Concatenate arrays.
circshift Shift array circularly.
ipermute Inverse permute array dimensions.
ndgrid Generate arrays for n-dimensional functions and interpolation.
ndims Return the number of array dimensions.
permute Permute array dimensions.
shiftdim Shift array dimensions.
squeeze Remove singleton dimensions.
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• “Matrices in the MATLAB Environment” on page 2-2
• “Systems of Linear Equations” on page 2-11
• “Inverses and Determinants” on page 2-25
• “Factorizations” on page 2-29
• “Powers and Exponentials” on page 2-37
• “Eigenvalues” on page 2-41
• “Singular Values” on page 2-45
• “LAPACK in MATLAB” on page 2-50
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Matrices in the MATLAB Environment
In this section...
“Creating Matrices” on page 2-2
“Adding and Subtracting Matrices” on page 2-3
“Vector Products and Transpose” on page 2-4
“Multiplying Matrices” on page 2-6
“Identity Matrix” on page 2-8
“Kronecker Tensor Product” on page 2-8
“Vector and Matrix Norms” on page 2-9
“Using Multithreaded Computation with Linear Algebra Functions” on page 2-10

Creating Matrices

The MATLAB environment uses the term matrix to indicate a variable containing real or
complex numbers arranged in a two-dimensional grid. An array is, more generally, a
vector, matrix, or higher dimensional grid of numbers. All arrays in MATLAB are
rectangular, in the sense that the component vectors along any dimension are all the
same length.

Symbolic Math Toolbox™ software extends the capabilities of MATLAB software to
matrices of mathematical expressions.

MATLAB has dozens of functions that create different kinds of matrices. There are two
functions you can use to create a pair of 3-by-3 example matrices for use throughout this
chapter. The first example is symmetric:

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

The second example is not symmetric:

B = magic(3)
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B =
       8     1     6
       3     5     7
       4     9     2

Another example is a 3-by-2 rectangular matrix of random integers:

  C = fix(10*rand(3,2))

  C =
       9     4
       2     8
       6     7

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-
by-1 matrix. The statements

u = [3; 1; 4]

v = [2 0 -1]

s = 7

produce a column vector, a row vector, and a scalar:

u =
       3
       1
       4

v =
       2     0    -1

s =
       7

For more information about creating and working with matrices, see “Creating and
Concatenating Matrices” on page 1-2.

Adding and Subtracting Matrices

Addition and subtraction of matrices is defined just as it is for arrays, element by
element. Adding A to B, and then subtracting A from the result recovers B:
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A = pascal(3);
B = magic(3);
X = A + B

X =
       9     2     7
       4     7    10
       5    12     8

Y = X - A

Y =
       8     1     6
       3     5     7
       4     9     2

Addition and subtraction require both matrices to have the same dimension, or one of
them be a scalar. If the dimensions are incompatible, an error results:

C = fix(10*rand(3,2))
X = A + C
Error using  + 
Matrix dimensions must agree.

Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in either order.
The result is either a scalar, the inner product, or a matrix, the outer product :

u = [3; 1; 4];
v = [2 0 -1];
x = v*u

x =
       2

X = u*v

X =
       6     0     -3
       2     0     -1
       8     0     -4

2 Linear Algebra

2-4



For real matrices, the transpose operation interchanges aij and aji. MATLAB uses the
apostrophe operator (') to perform a complex conjugate transpose, and uses the dot-
apostrophe operator (.') to transpose without conjugation. For matrices containing all
real elements, the two operators return the same result.

The example matrix A is symmetric, so A' is equal to A. But, B is not symmetric:

B = magic(3);
X = B'

X =
       8     3     4
       1     5     9
       6     7     2

Transposition turns a row vector into a column vector:

x = v'

x =
       2
       0
      -1

If x and y are both real column vectors, the product x*y is not defined, but the two
products

x'*y

and

y'*x

are the same scalar. This quantity is used so frequently, it has three different names:
inner product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' not only transposes the vector or
matrix, but also converts each complex element to its complex conjugate. That is, the sign
of the imaginary part of each complex element changes. So if

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]
z =
   1.0000 + 2.0000i   7.0000 - 3.0000i   3.0000 + 4.0000i
   6.0000 - 2.0000i        0 + 9.0000i   4.0000 + 7.0000i
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then
z'
ans =
   1.0000 - 2.0000i   6.0000 + 2.0000i
   7.0000 + 3.0000i        0 - 9.0000i
   3.0000 - 4.0000i   4.0000 - 7.0000i

The unconjugated complex transpose, where the complex part of each element retains its
sign, is denoted by z.':

z.'
ans = 
   1.0000 + 2.0000i   6.0000 - 2.0000i
   7.0000 - 3.0000i        0 + 9.0000i
   3.0000 + 4.0000i   4.0000 + 7.0000i

For complex vectors, the two scalar products x'*y and y'*x are complex conjugates of
each other, and the scalar product x'*x of a complex vector with itself is real.

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of the underlying
linear transformations and allows compact representation of systems of simultaneous
linear equations. The matrix product C = AB is defined when the column dimension of A
is equal to the row dimension of B, or when one of them is a scalar. If A is m-by-p and B
is p-by-n, their product C is m-by-n. The product can actually be defined using MATLAB
for loops, colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m
     for j = 1:n
        C(i,j) = A(i,:)*B(:,j);
     end
end

MATLAB uses a single asterisk to denote matrix multiplication. The next two examples
illustrate the fact that matrix multiplication is not commutative; AB is usually not equal
to BA:
X = A*B
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X =
      15    15    15
      26    38    26
      41    70    39

Y = B*A

Y =
      15    28    47
      15    34    60
      15    28    43

A matrix can be multiplied on the right by a column vector and on the left by a row
vector:

u = [3; 1; 4];
x = A*u

x =
       8
      17
      30

v = [2 0 -1];
y = v*B

y =
      12    -7    10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions:

C = fix(10*rand(3,2));
X = A*C

X =
      17    19
      31    41
      51    70

Y = C*A

Error using  * 
Inner matrix dimensions must agree.

Anything can be multiplied by a scalar:
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s = 7;
w = s*v

w =
      14     0    -7

Identity Matrix

Generally accepted mathematical notation uses the capital letter I to denote identity
matrices, matrices of various sizes with ones on the main diagonal and zeros elsewhere.
These matrices have the property that AI = A and IA = A whenever the dimensions are
compatible. The original version of MATLAB could not use I for this purpose because it
did not distinguish between uppercase and lowercase letters and i already served as a
subscript and as the complex unit. So an English language pun was introduced. The
function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n square
identity matrix.

Kronecker Tensor Product

The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed from all
possible products of the elements of X with those of Y. If X is m-by-n and Y is p-by-q, then
kron(X,Y) is mp-by-nq. The elements are arranged in the following order:

[X(1,1)*Y  X(1,2)*Y  . . .  X(1,n)*Y
                     . . .
 X(m,1)*Y  X(m,2)*Y  . . .  X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build up repeated
copies of small matrices. For example, if X is the 2-by-2 matrix

X =
       1     2
       3     4

and I = eye(2,2) is the 2-by-2 identity matrix, then the two matrices

kron(X,I)
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and

kron(I,X)

are

       1     0     2     0
       0     1     0     2
       3     0     4     0
       0     3     0     4

and

       1     2     0     0
       3     4     0     0
       0     0     1     2
       0     0     3     4

Vector and Matrix Norms

The p-norm of a vector x,

x xp i
p

p

= ( )Â
1/

,

is computed by norm(x,p). This is defined by any value of p > 1, but the most common
values of p are 1, 2, and ∞. The default value is p = 2, which corresponds to Euclidean
length:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
      3.0000    2.2361    2.0000

The p-norm of a matrix A,

A
Ax

x
p

x

p

p

= max ,

can be computed for p = 1, 2, and ∞ by norm(A,p). Again, the default value is p = 2:

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]
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ans =
     19.0000   14.8015   13.0000

Using Multithreaded Computation with Linear Algebra Functions

MATLAB software supports multithreaded computation for a number of linear algebra
and element-wise numerical functions. These functions automatically execute on
multiple threads. For a function or expression to execute faster on multiple CPUs, a
number of conditions must be true:

1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution
outweigh the time required to partition the data and manage separate execution
threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory
access time. As a general rule, complicated functions speed up more than simple
functions.

The matrix multiply (X*Y) and matrix power (X^p) operators show significant increase
in speed on large double-precision arrays (on order of 10,000 elements). The matrix
analysis functions det, rcond, hess, and expm also show significant increase in speed
on large double-precision arrays.

See Also

More About
• “Systems of Linear Equations” on page 2-11
• “Inverses and Determinants” on page 2-25
• “Factorizations” on page 2-29
• “Eigenvalues” on page 2-41
• “Singular Values” on page 2-45
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Systems of Linear Equations

In this section...
“Computational Considerations” on page 2-11
“General Solution” on page 2-13
“Square Systems” on page 2-13
“Overdetermined Systems” on page 2-16
“Underdetermined Systems” on page 2-18
“Solving for Several Right-Hand Sides” on page 2-21
“Iterative Methods” on page 2-22
“Multithreaded Computation” on page 2-23

Computational Considerations

One of the most important problems in technical computing is the solution of systems of
simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two matrices A
and b, does there exist a unique matrix x, so that Ax= b or xA= b?

It is instructive to consider a 1-by-1 example. For example, does the equation

7x = 21

have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The solution is
easily obtained by division:

x = 21/7 = 3.

The solution is not ordinarily obtained by computing the inverse of 7, that is 7–
1= 0.142857..., and then multiplying 7–1 by 21. This would be more work and, if 7–1 is
represented to a finite number of digits, less accurate. Similar considerations apply to
sets of linear equations with more than one unknown; MATLAB solves such equations
without computing the inverse of the matrix.
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Although it is not standard mathematical notation, MATLAB uses the division
terminology familiar in the scalar case to describe the solution of a general system of
simultaneous equations. The two division symbols, slash, /, and backslash, \, correspond
to the two MATLAB functions mrdivide and mldivide. These operators are used for
the two situations where the unknown matrix appears on the left or right of the
coefficient matrix:
x = b/A Denotes the solution to the matrix equation xA = b,

obtained using mrdivide.
x = A\b Denotes the solution to the matrix equation Ax = b,

obtained using mldivide.

Think of “dividing” both sides of the equation Ax = b or xA = b by A. The coefficient
matrix A is always in the “denominator.”

The dimension compatibility conditions for x = A\b require the two matrices A and b to
have the same number of rows. The solution x then has the same number of columns as b
and its row dimension is equal to the column dimension of A. For x = b/A, the roles of
rows and columns are interchanged.

In practice, linear equations of the form Ax = b occur more frequently than those of the
form xA = b. Consequently, the backslash is used far more frequently than the slash. The
remainder of this section concentrates on the backslash operator; the corresponding
properties of the slash operator can be inferred from the identity:

(b/A)' = (A'\b').

The coefficient matrix A need not be square. If A has size m-by-n, then there are three
cases:
m = n Square system. Seek an exact solution.
m > n Overdetermined system, with more equations than

unknowns. Find a least-squares solution.
m < n Underdetermined system, with fewer equations than

unknowns. Find a basic solution with at most m nonzero
components.

The mldivide Algorithm

The mldivide operator employs different solvers to handle different kinds of coefficient
matrices. The various cases are diagnosed automatically by examining the coefficient
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matrix. For more information, see the “Algorithms” section of the mldivide reference
page.

General Solution

The general solution to a system of linear equations Ax= b describes all possible
solutions. You can find the general solution by:

1 Solving the corresponding homogeneous system Ax = 0. Do this using the null
command, by typing null(A). This returns a basis for the solution space to Ax = 0.
Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system Ax =b.

You can then write any solution to Ax= b as the sum of the particular solution to Ax =b,
from step 2, plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to
Ax =b, as in step 2.

Square Systems

The most common situation involves a square coefficient matrix A and a single right-
hand side column vector b.

Nonsingular Coefficient Matrix

If the matrix A is nonsingular, then the solution, x = A\b, is the same size as b. For
example:

A = pascal(3);
u = [3; 1; 4];
x = A\u

x =
      10
     -12
       5

It can be confirmed that A*x is exactly equal to u.

If A and b are square and the same size, x= A\b is also that size:
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b = magic(3);
X = A\b

X =
      19    -3    -1
     -17     4    13
       6     0    -6

It can be confirmed that A*x is exactly equal to b.

Both of these examples have exact, integer solutions. This is because the coefficient
matrix was chosen to be pascal(3), which is a full rank matrix (nonsingular).

Singular Coefficient Matrix

A square matrix A is singular if it does not have linearly independent columns. If A is
singular, the solution to Ax = b either does not exist, or is not unique. The backslash
operator, A\b, issues a warning if A is nearly singular or if it detects exact singularity.

If A is singular and Ax = b has a solution, you can find a particular solution that is not
unique, by typing

P = pinv(A)*b

pinv(A) is a pseudoinverse of A. If Ax = b does not have an exact solution, then pinv(A)
returns a least-squares solution.

For example:

A = [ 1     3     7
     -1     4     4
      1    10    18 ]

is singular, as you can verify by typing

rank(A)

ans =

     2

Since A is not full rank, it has some singular values equal to zero.
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Exact Solutions

For b =[5;2;12], the equation Ax = b has an exact solution, given by

pinv(A)*b

ans =
    0.3850
   -0.1103
    0.7066

Verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
    5.0000
    2.0000
   12.0000

Least-Squares Solutions

However, if b = [3;6;0], Ax = b does not have an exact solution. In this case,
pinv(A)*b returns a least-squares solution. If you type

A*pinv(A)*b

ans =
   -1.0000
    4.0000
    2.0000

you do not get back the original vector b.

You can determine whether Ax =b has an exact solution by finding the row reduced
echelon form of the augmented matrix [A b]. To do so for this example, enter

rref([A b])
ans =
    1.0000         0    2.2857         0
         0    1.0000    1.5714         0
         0         0         0    1.0000

Since the bottom row contains all zeros except for the last entry, the equation does not
have a solution. In this case, pinv(A) returns a least-squares solution.
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Overdetermined Systems

This example shows how overdetermined systems are often encountered in various kinds
of curve fitting to experimental data.

A quantity, y, is measured at several different values of time, t, to produce the following
observations. You can enter the data and view it in a table with the following statements.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';
B = table(t,y)

B=6x2 table
     t      y  
    ___    ____

      0    0.82
    0.3    0.72
    0.8    0.63
    1.1     0.6
    1.6    0.55
    2.3     0.5

Try modeling the data with a decaying exponential function

.

The preceding equation says that the vector y should be approximated by a linear
combination of two other vectors. One is a constant vector containing all ones and the

other is the vector with components exp(-t). The unknown coefficients,  and , can
be computed by doing a least-squares fit, which minimizes the sum of the squares of the
deviations of the data from the model. There are six equations in two unknowns,
represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 

    1.0000    1.0000
    1.0000    0.7408
    1.0000    0.4493
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    1.0000    0.3329
    1.0000    0.2019
    1.0000    0.1003

Use the backslash operator to get the least-squares solution.

c = E\y

c = 

    0.4760
    0.3413

In other words, the least-squares fit to the data is

The following statements evaluate the model at regularly spaced increments in t, and
then plot the result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')
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E*c is not exactly equal to y, but the difference might well be less than measurement
errors in the original data.

A rectangular matrix A is rank deficient if it does not have linearly independent columns.
If A is rank deficient, then the least-squares solution to AX = B is not unique. A\B issues
a warning if A is rank deficient and produces a least-squares solution. You can use
lsqminnorm to find the solution X that has the minimum norm among all solutions.

Underdetermined Systems

This example shows how the solution to underdetermined systems is not unique.
Underdetermined linear systems involve more unknowns than equations. The matrix left
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division operation in MATLAB finds a basic least-squares solution, which has at
most m nonzero components for an m-by-n coefficient matrix.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)

R =

       6              8              7              3       
       3              5              4              1       

b =

       7       
       8      

The linear system Rp = b involves two equations in four unknowns. Since the coefficient
matrix contains small integers, it is appropriate to use the format command to display
the solution in rational format. The particular solution is obtained with

format rat
p = R\b

p =

       0       
      17/7     
       0       
     -29/7    

One of the nonzero components is p(2) because R(:,2) is the column of R with largest
norm. The other nonzero component is p(4) because R(:,4) dominates after R(:,2) is
eliminated.

The complete general solution to the underdetermined system can be characterized by
adding p to an arbitrary linear combination of the null space vectors, which can be found
using the null function with an option requesting a rational basis.

Z = null(R,'r')
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Z =

      -1/2           -7/6     
      -1/2            1/2     
       1              0       
       0              1       

It can be confirmed that R*Z is zero and that the residual R*x - b is small for any
vector x, where

x = p + Z*q

Since the columns of Z are the null space vectors, the product Z*q is a linear combination
of those vectors:

Z q x x
u

w
ux wx* .= ( ) Ê

Ë
Á

ˆ

¯
˜ = +v v v v

1 2 1 2

To illustrate, choose an arbitrary q and construct x.

q = [-2; 1];
x = p + Z*q;

Calculate the norm of the residual.

format short
norm(R*x - b)

ans =

   2.6645e-15

When infinitely many solutions are available, the solution with minimum norm is of
particular interest. You can use lsqminnorm to compute the minimum-norm least-
squares solution. This solution has the smallest possible value for norm(p).

p = lsqminnorm(R,b)

p =

    -207/137   
     365/137   
      79/137   
    -424/137  
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Solving for Several Right-Hand Sides

Some problems are concerned with solving linear systems that have the same coefficient
matrix A, but different right-hand sides b. When the different values of b are available at
the same time, you can construct b as a matrix with several columns and solve all of the
systems of equations at the same time using a single backslash command: X = A\[b1
b2 b3 …].

However, sometimes the different values of b are not all available at the same time,
which means you need to solve several systems of equations consecutively. When you
solve one of these systems of equations using slash (/) or backslash (\), the operator
factorizes the coefficient matrix A and uses this matrix decomposition to compute the
solution. However, each subsequent time you solve a similar system of equations with a
different b, the operator computes the same decomposition of A, which is a redundant
computation.

The solution to this problem is to precompute the decomposition of A, and then reuse the
factors to solve for the different values of b. In practice, however, precomputing the
decomposition in this manner can be difficult since you need to know which
decomposition to compute (LU, LDL, Cholesky, and so on) as well as how to multiply the
factors to solve the problem. For example, with LU decomposition you need to solve two
linear systems to solve the original system Ax = b:

[L,U] = lu(A);
x = U \ (L \ b);

Instead, the recommended method for solving linear systems with several consecutive
right-hand sides is to use decomposition objects. These objects enable you to leverage
the performance benefits of precomputing the matrix decomposition, but they do not
require knowledge of how to use the matrix factors. You can replace the previous LU
decomposition with:

dA = decomposition(A,'lu');
x = dA\b;

If you are unsure which decomposition to use, decomposition(A) chooses the correct
type based on the properties of A, similar to what backslash does.

Here is a simple test of the possible performance benefits of this approach. The test
solves the same sparse linear system 100 times using both backslash (\) and
decomposition.
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n = 1e3;
A = sprand(n,n,0.2) + speye(n);
b = ones(n,1);

% Backslash solution
tic
for k = 1:100
    x = A\b;
end
toc

Elapsed time is 9.006156 seconds.

% decomposition solution
tic
dA = decomposition(A);
for k = 1:100
    x = dA\b;
end
toc

Elapsed time is 0.374347 seconds.

For this problem, the decomposition solution is much faster than using backslash
alone, yet the syntax remains simple.

Iterative Methods

If the coefficient matrix A is large and sparse, factorization methods are generally not
efficient. Iterative methods generate a series of approximate solutions. MATLAB
provides several iterative methods to handle large, sparse input matrices.
Function Description
pcg Preconditioned conjugate gradients method. This method is

appropriate for Hermitian positive definite coefficient matrix
A.

bicg BiConjugate Gradients Method
bicgstab BiConjugate Gradients Stabilized Method
bicgstabl BiCGStab(l) Method
cgs Conjugate Gradients Squared Method
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Function Description
gmres Generalized Minimum Residual Method
lsqr LSQR Method
minres Minimum Residual Method. This method is appropriate for

Hermitian coefficient matrix A.
qmr Quasi-Minimal Residual Method
symmlq Symmetric LQ Method
tfqmr Transpose-Free QMR Method

Multithreaded Computation

MATLAB supports multithreaded computation for a number of linear algebra and
element-wise numerical functions. These functions automatically execute on multiple
threads. For a function or expression to execute faster on multiple CPUs, a number of
conditions must be true:

1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution
outweigh the time required to partition the data and manage separate execution
threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory
access time. As a general rule, complicated functions speed up more than simple
functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on large
double-precision arrays (on order of 10,000 elements or more) when multithreading is
enabled.

See Also
decomposition | lsqminnorm | mldivide | mrdivide | pinv
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More About
• “Matrices in the MATLAB Environment” on page 2-2
• “Inverses and Determinants” on page 2-25
• “Factorizations” on page 2-29
• “Eigenvalues” on page 2-41
• “Singular Values” on page 2-45
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Inverses and Determinants
In this section...
“Introduction” on page 2-25
“Pseudoinverses” on page 2-26

Introduction

If A is square and nonsingular, the equations AX = I and XA = I have the same solution,
X. This solution is called the inverse of A, is denoted by A-1, and is computed by the
function inv.

The determinant of a matrix is useful in theoretical considerations and some types of
symbolic computation, but its scaling and round-off error properties make it far less
satisfactory for numeric computation. Nevertheless, the function det computes the
determinant of a square matrix:

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6
d = det(A)
X = inv(A)

d =
       1

X = 
       3    -3     1
      -3     5    -2
       1    -2     1

Again, because A is symmetric, has integer elements, and has determinant equal to one,
so does its inverse. However,

B = magic(3)

B =
       8     1     6
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       3     5     7
       4     9     2
d = det(B)
X = inv(B)

d =
     -360

X =
      0.1472   -0.1444    0.0639
     -0.0611    0.0222    0.1056
     -0.0194    0.1889   -0.1028

Closer examination of the elements of X, or use of format rat, would reveal that they
are integers divided by 360.

If A is square and nonsingular, then, without round-off error, X = inv(A)*B is
theoretically the same as X = A\B and Y = B*inv(A) is theoretically the same as Y =
B/A. But the computations involving the backslash and slash operators are preferable
because they require less computer time, less memory, and have better error-detection
properties.

Pseudoinverses

Rectangular matrices do not have inverses or determinants. At least one of the equations
AX = I and XA = I does not have a solution. A partial replacement for the inverse is
provided by the Moore-Penrose pseudoinverse, which is computed by the pinv function.

format short
C = [9 4
     2 8
     6 7];
X = pinv(C)

X =
    0.1159   -0.0729    0.0171
   -0.0534    0.1152    0.0418

The matrix

Q = X*C

Q =
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    1.0000    0.0000
    0.0000    1.0000

is the 2-by-2 identity, but the matrix

P = C*X

P =
    0.8293   -0.1958    0.3213
   -0.1958    0.7754    0.3685
    0.3213    0.3685    0.3952

is not the 3-by-3 identity. However, P acts like an identity on a portion of the space in the
sense that P is symmetric, P*C is equal to C, and X*P is equal to X.

Solving a Rank-Deficient System

If A is m-by-n with m > n and full rank n, each of the three statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least-squares solution x, although the backslash
operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not
unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where r is the rank of A. The solution computed by x = pinv(A)*b is the
minimal norm solution because it minimizes norm(x). An attempt to compute a solution
with x = inv(A'*A)*A'*b fails because A'*A is singular.

Here is an example that illustrates the various solutions:

A = [ 1  2  3
      4  5  6
      7  8  9
     10 11 12 ];

does not have full rank. Its second column is the average of the first and third columns. If
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b = A(:,2)

is the second column, then an obvious solution to A*x = b is x = [0 1 0]'. But none
of the approaches computes that x. The backslash operator gives

x = A\b

Warning: Rank deficient, rank = 2, tol = 1.4594e-014.
x =
      0.5000
      0
      0.5000

This solution has two nonzero components. The pseudoinverse approach gives

y = pinv(A)*b

y =
      0.3333
      0.3333
      0.3333

There is no warning about rank deficiency. But norm(y) = 0.5774 is less than
norm(x) = 0.7071. Finally,

z = inv(A'*A)*A'*b

fails completely:

Warning: Matrix is close to singular or badly scaled.
         Results may be inaccurate. RCOND = 9.868649e-018. 
z =
   -0.8594
    1.3438
   -0.6875

See Also

More About
• “Matrices in the MATLAB Environment” on page 2-2
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Factorizations
In this section...
“Introduction” on page 2-29
“Cholesky Factorization” on page 2-29
“LU Factorization” on page 2-31
“QR Factorization” on page 2-32
“Using Multithreaded Computation for Factorization” on page 2-35

Introduction

All three of the matrix factorizations discussed in this section make use of triangular
matrices, where all the elements either above or below the diagonal are zero. Systems of
linear equations involving triangular matrices are easily and quickly solved using either
forward or back substitution.

Cholesky Factorization

The Cholesky factorization expresses a symmetric matrix as the product of a triangular
matrix and its transpose

A = R′R,

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have such a
factorization are said to be positive definite. This implies that all the diagonal elements
of A are positive and that the off-diagonal elements are “not too big.” The Pascal matrices
provide an interesting example. Throughout this chapter, the example matrix A has been
the 3-by-3 Pascal matrix. Temporarily switch to the 6-by-6:

A = pascal(6)

A =
       1     1     1     1     1     1
       1     2     3     4     5     6
       1     3     6    10    15    21
       1     4    10    20    35    56
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       1     5    15    35    70   126
       1     6    21    56   126   252

The elements of A are binomial coefficients. Each element is the sum of its north and
west neighbors. The Cholesky factorization is

R = chol(A)

R =
     1     1     1     1     1     1
     0     1     2     3     4     5
     0     0     1     3     6    10
     0     0     0     1     4    10
     0     0     0     0     1     5
     0     0     0     0     0     1

The elements are again binomial coefficients. The fact that R'*R is equal to A
demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any complex matrix
that has a Cholesky factorization satisfies

A′ = A

and is said to be Hermitian positive definite.

The Cholesky factorization allows the linear system

Ax = b

to be replaced by

R′Rx = b.

Because the backslash operator recognizes triangular systems, this can be solved in the
MATLAB environment quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the complexity of
the subsequent backslash solutions is only O(n2).
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LU Factorization

LU factorization, or Gaussian elimination, expresses any square matrix A as the product
of a permutation of a lower triangular matrix and an upper triangular matrix

A = LU,

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is
an upper triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The
matrix

0 1

1 0

È

Î
Í

˘

˚
˙

cannot be expressed as the product of triangular matrices without interchanging its two
rows. Although the matrix

e 1

1 0

È

Î
Í

˘

˚
˙

can be expressed as the product of triangular matrices, when ε is small, the elements in
the factors are large and magnify errors, so even though the permutations are not strictly
necessary, they are desirable. Partial pivoting ensures that the elements of L are
bounded by one in magnitude and that the elements of U are not much larger than those
of A.

For example:

[L,U] = lu(B)

L =
    1.0000         0         0
    0.3750    0.5441    1.0000
    0.5000    1.0000         0

U =
    8.0000    1.0000    6.0000
         0    8.5000   -1.0000
         0         0    5.2941

The LU factorization of A allows the linear system
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A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), though the
signs of the determinants might be reversed.

QR Factorization

An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix whose
columns all have unit length and are perpendicular to each other. If Q is orthogonal, then

Q′Q = 1.

The simplest orthogonal matrices are two-dimensional coordinate rotations:
cos( ) sin( )

sin( ) cos( )
.

q q

q q-

È

Î
Í

˘

˚
˙

For complex matrices, the corresponding term is unitary. Orthogonal and unitary
matrices are desirable for numerical computation because they preserve length, preserve
angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the product of
an orthogonal or unitary matrix and an upper triangular matrix. A column permutation
might also be involved:

A = QR

or

AP = QR,
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where Q is orthogonal or unitary, R is upper triangular, and P is a permutation.

There are four variants of the QR factorization—full or economy size, and with or
without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than
columns, that is m-by-n with m > n. The full-size QR factorization produces a square, m-
by-m orthogonal Q and a rectangular m-by-n upper triangular R:

C=gallery('uniformdata',[5 4], 0);
[Q,R] = qr(C)

Q =

    0.6191    0.1406   -0.1899   -0.5058    0.5522
    0.1506    0.4084    0.5034    0.5974    0.4475
    0.3954   -0.5564    0.6869   -0.1478   -0.2008
    0.3167    0.6676    0.1351   -0.1729   -0.6370
    0.5808   -0.2410   -0.4695    0.5792   -0.2207

R =

    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648
         0         0         0         0

In many cases, the last m – n columns of Q are not needed because they are multiplied by
the zeros in the bottom portion of R. So the economy-size QR factorization produces a
rectangular, m-by-n Q with orthonormal columns and a square n-by-n upper triangular
R. For the 5-by-4 example, this is not much of a saving, but for larger, highly rectangular
matrices, the savings in both time and memory can be quite important:

[Q,R] = qr(C,0)    
Q =

    0.6191    0.1406   -0.1899   -0.5058
    0.1506    0.4084    0.5034    0.5974
    0.3954   -0.5564    0.6869   -0.1478
    0.3167    0.6676    0.1351   -0.1729
    0.5808   -0.2410   -0.4695    0.5792
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R =

    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648

In contrast to the LU factorization, the QR factorization does not require any pivoting or
permutations. But an optional column permutation, triggered by the presence of a third
output argument, is useful for detecting singularity or rank deficiency. At each step of
the factorization, the column of the remaining unfactored matrix with largest norm is
used as the basis for that step. This ensures that the diagonal elements of R occur in
decreasing order and that any linear dependence among the columns is almost certainly
be revealed by examining these elements. For the small example given here, the second
column of C has a larger norm than the first, so the two columns are exchanged:

[Q,R,P] = qr(C)

Q =
   -0.3522    0.8398   -0.4131
   -0.7044   -0.5285   -0.4739
   -0.6163    0.1241    0.7777

R =
  -11.3578   -8.2762
         0    7.2460
         0         0

P =
     0     1
     1     0

When the economy-size and column permutations are combined, the third output
argument is a permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
   -0.3522    0.8398
   -0.7044   -0.5285
   -0.6163    0.1241

R =
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  -11.3578   -8.2762
         0    7.2460

p =
     2     1

The QR factorization transforms an overdetermined linear system into an equivalent
triangular system. The expression

norm(A*x - b)

equals

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression
is also equal to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks into two
pieces:

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these expressions is
zero. Then the second expression gives the norm of the residual. When A does not have
full rank, the triangular structure of R makes it possible to find a basic solution to the
least-squares problem.

Using Multithreaded Computation for Factorization

MATLAB software supports multithreaded computation for a number of linear algebra
and element-wise numerical functions. These functions automatically execute on
multiple threads. For a function or expression to execute faster on multiple CPUs, a
number of conditions must be true:
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1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution
outweigh the time required to partition the data and manage separate execution
threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory
access time. As a general rule, complicated functions speed up more than simple
functions.

lu and qr show significant increase in speed on large double-precision arrays (on order of
10,000 elements).

See Also
chol | lu | qr

More About
• “Matrices in the MATLAB Environment” on page 2-2
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Powers and Exponentials

In this section...
“Positive Integer Powers” on page 2-37
“Inverse and Fractional Powers” on page 2-37
“Element-by-Element Powers” on page 2-38
“Exponentials” on page 2-38

Positive Integer Powers

If A is a square matrix and p is a positive integer, A^p effectively multiplies A by itself
p-1 times. For example:

A = [1 1 1;1 2 3;1 3 6]

A =

     1     1     1
     1     2     3
     1     3     6

X = A^2

X =
     3     6    10
     6    14    25
    10    25    46

Inverse and Fractional Powers

If A is square and nonsingular, A^(-p) effectively multiplies inv(A) by itself p-1 times:

Y = A^(-3)

Y =

  145.0000 -207.0000   81.0000
 -207.0000  298.0000 -117.0000
   81.0000 -117.0000   46.0000
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Fractional powers, like A^(2/3), are also permitted; the results depend upon the
distribution of the eigenvalues of the matrix.

Element-by-Element Powers

The .^ operator produces element-by-element powers. For example:

X = A.^2

A =
     1     1     1
     1     4     9
     1     9    36

Exponentials

The function

sqrtm(A)

computes A^(1/2) by a more accurate algorithm. The m in sqrtm distinguishes this
function from sqrt(A), which, like A.^(1/2), does its job element-by-element.

A system of linear, constant coefficient, ordinary differential equations can be written

where x = x(t) is a vector of functions of t and A is a matrix independent of t. The
solution can be expressed in terms of the matrix exponential

.

The function

expm(A)

computes the matrix exponential. An example is provided by the 3-by-3 coefficient
matrix,

A = [0 -6 -1; 6 2 -16; -5 20 -10]

A =
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     0    -6    -1
     6     2   -16
    -5    20   -10

and the initial condition, x(0).

x0 = [1 1 1]'

x0 =

     1
     1
     1

The matrix exponential is used to compute the solution, x(t), to the differential equation
at 101 points on the interval .

X = [];
for t = 0:.01:1
   X = [X expm(t*A)*x0];
end

A three-dimensional phase plane plot shows the solution spiraling in towards the origin.
This behavior is related to the eigenvalues of the coefficient matrix.

plot3(X(1,:),X(2,:),X(3,:),'-o')
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See Also
exp | mpower | power

More About
• “Matrices in the MATLAB Environment” on page 2-2
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Eigenvalues
In this section...
“Eigenvalue Decomposition” on page 2-41
“Multiple Eigenvalues” on page 2-42
“Schur Decomposition” on page 2-43

Eigenvalue Decomposition

An eigenvalue and eigenvector of a square matrix A are, respectively, a scalar λ and a
nonzero vector υ that satisfy

Aυ = λυ.

With the eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding
eigenvectors forming the columns of a matrix V, you have

AV = VΛ.

If V is nonsingular, this becomes the eigenvalue decomposition

A = VΛV–1.

A good example is provided by the coefficient matrix of the ordinary differential equation
on page 2-38 in the previous section:

A =
     0    -6    -1
     6     2   -16
    -5    20   -10

The statement

lambda = eig(A)

produces a column vector containing the eigenvalues. For this matrix, the eigenvalues
are complex:

lambda =
     -3.0710         

 Eigenvalues

2-41



     -2.4645+17.6008i
     -2.4645-17.6008i

The real part of each of the eigenvalues is negative, so eλt approaches zero as t increases.
The nonzero imaginary part of two of the eigenvalues, ±ω, contributes the oscillatory
component, sin(ωt), to the solution of the differential equation.

With two output arguments, eig computes the eigenvectors and stores the eigenvalues
in a diagonal matrix:

[V,D] = eig(A)

V =
  -0.8326         0.2003 - 0.1394i   0.2003 + 0.1394i
  -0.3553        -0.2110 - 0.6447i  -0.2110 + 0.6447i
  -0.4248        -0.6930            -0.6930          

D =
  -3.0710                 0                 0         
        0           -2.4645+17.6008i        0         
        0                 0           -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates of each
other. All three vectors are normalized to have Euclidean length, norm(v,2), equal to
one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is within
round-off error of A. And, inv(V)*A*V, or V\A*V, is within round-off error of D.

Multiple Eigenvalues

Some matrices do not have an eigenvector decomposition. These matrices are not
diagonalizable. For example:

A = [ 1    -2    1 
      0     1    4 
      0     0    3 ]

For this matrix

[V,D] = eig(A)

produces
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V =

    1.0000    1.0000   -0.5571
         0    0.0000    0.7428
         0         0    0.3714

D =

     1     0     0
     0     1     0
     0     0     3

There is a double eigenvalue at λ = 1. The first and second columns of V are the same.
For this matrix, a full set of linearly independent eigenvectors does not exist.

Schur Decomposition

The MATLAB advanced matrix computations do not require eigenvalue decompositions.
They are based, instead, on the Schur decomposition

A = USU′.

where U is an orthogonal matrix and S is a block upper triangular matrix with 1-by-1
and 2-by-2 blocks on the diagonal. The eigenvalues are revealed by the diagonal elements
and blocks of S, while the columns of U provide a basis with much better numerical
properties than a set of eigenvectors. The Schur decomposition of this defective example
is

[U,S] = schur(A)

U =
   -0.4741    0.6648    0.5774
    0.8127    0.0782    0.5774
   -0.3386   -0.7430    0.5774

S =
   -1.0000   20.7846   -44.6948
         0    1.0000    -0.6096
         0         0     1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.
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Note If A is complex, schur returns the complex Schur form, which is upper triangular
with the eigenvalues of A on the diagonal.

See Also
eig | schur

More About
• “Matrices in the MATLAB Environment” on page 2-2
• “Factorizations” on page 2-29
• “Singular Values” on page 2-45
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Singular Values
A singular value and corresponding singular vectors of a rectangular matrix A are,
respectively, a scalar σ and a pair of vectors u and v that satisfy
Av u

A u v
H

=

=

s

s ,

where A
H  is the Hermitian transpose of A. The singular vectors u and v are typically

scaled to have a norm of 1. Also, if u and v are singular vectors of A, then -u and -v are
singular vectors of A as well.

The singular values σ are always real and nonnegative, even if A is complex. With the
singular values on the diagonal of a diagonal matrix Σ and the corresponding singular
vectors forming the columns of two orthogonal matrices U and V, you obtain the
equations
AV U

A U V
H

=

=

S

S.

Since U and V are unitary matrices, multiplying the first equation by V
H  on the right

yields the singular value decomposition equation
A U V

H
= S .

The full singular value decomposition of an m-by-n matrix involves an m-by-m U, an m-
by-n Σ, and an n-by-n V. In other words, U and V are both square, and Σ is the same size
as A. If A has many more rows than columns (m > n), then the resulting m-by-m matrix U
is large. However, most of the columns in U are multiplied by zeros in Σ. In this
situation, the economy-sized decomposition saves both time and storage by producing an
m-by-n U, an n-by-n Σ and the same V:
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The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it
represents a mapping from a vector space into itself, as it does for an ordinary
differential equation. However, the singular value decomposition is the appropriate tool
for analyzing a mapping from one vector space into another vector space, possibly with a
different dimension. Most systems of simultaneous linear equations fall into this second
category.

If A is square, symmetric, and positive definite, then its eigenvalue and singular value
decompositions are the same. But, as A departs from symmetry and positive definiteness,
the difference between the two decompositions increases. In particular, the singular
value decomposition of a real matrix is always real, but the eigenvalue decomposition of a
real, nonsymmetric matrix might be complex.

For the example matrix

A =
     9     4
     6     8
     2     7

the full singular value decomposition is

[U,S,V] = svd(A)

U =

    0.6105   -0.7174    0.3355
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    0.6646    0.2336   -0.7098
    0.4308    0.6563    0.6194

S =

   14.9359         0
         0    5.1883
         0         0

V =

    0.6925   -0.7214
    0.7214    0.6925

You can verify that U*S*V' is equal to A to within round-off error. For this small
problem, the economy size decomposition is only slightly smaller.

[U,S,V] = svd(A,0)

U =

    0.6105   -0.7174
    0.6646    0.2336
    0.4308    0.6563

S =

   14.9359         0
         0    5.1883

V =

    0.6925   -0.7214
    0.7214    0.6925

Again, U*S*V' is equal to A to within round-off error.

If the matrix A is large and sparse, then using svd to calculate all of the singular values
and vectors is not always practical. For example, if you need to know just a few of the
largest singular values, then calculating all of the singular values of a 5000-by-5000
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sparse matrix is a lot of extra work. In cases where only a subset of the singular values
and vectors are required, the svds function is preferred over svd.

For a 1000-by-1000 random sparse matrix with a density of about 30%,

n = 1000;
A = sprand(n,n,0.3);

the six largest singular values are

S = svds(A)

S =

  130.2184
   16.4358
   16.4119
   16.3688
   16.3242
   16.2838

Also, the six smallest singular values are

S = svds(A,6,'smallest')

S =

    0.0740
    0.0574
    0.0388
    0.0282
    0.0131
    0.0066

For smaller matrices that can fit in memory as a full matrix, full(A), using
svd(full(A)) might still be quicker than svds. However, for truly large and sparse
matrices, using svds becomes necessary.

See Also
gsvd | svd | svds
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More About
• “Matrices in the MATLAB Environment” on page 2-2
• “Factorizations” on page 2-29
• “Eigenvalues” on page 2-41
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2-49



LAPACK in MATLAB
LAPACK is a library of routines that provides fast, robust algorithms for numerical
linear algebra and matrix computations. Since the year 2000, linear algebra functions
and matrix operations in MATLAB are built on LAPACK, and they continue to benefit
from the performance and accuracy of its routines.
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Random Numbers

• “Random Numbers in MATLAB” on page 3-2
• “Why Do Random Numbers Repeat After Startup?” on page 3-3
• “Create Arrays of Random Numbers” on page 3-4
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Integers” on page 3-7
• “Random Numbers from Normal Distribution with Specific Mean and Variance”

on page 3-8
• “Random Numbers Within a Sphere” on page 3-9
• “Generate Random Numbers That Are Repeatable” on page 3-11
• “Generate Random Numbers That Are Different” on page 3-15
• “Managing the Global Stream” on page 3-17
• “Creating and Controlling a Random Number Stream” on page 3-23
• “Multiple Streams” on page 3-31
• “Replace Discouraged Syntaxes of rand and randn” on page 3-34
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Random Numbers in MATLAB
When you create random numbers using software, the results are not random in a strict,
mathematical sense. However, software applications, such as MATLAB, use algorithms
that make your results appear to be random and independent. The results also pass
various statistical tests of randomness and independence. These apparently random and
independent numbers are often described as pseudorandom and pseudoindependent. You
can use these numbers as if they are truly random and independent. One benefit of using
pseudorandom, pseudoindependent numbers is that you can repeat a random number
calculation at any time. This approach can be useful in testing or diagnostic situations.

Although repeatability can be useful, it is possible to repeat your results accidentally
when you really want different results. There are several ways to avoid this problem. The
documentation contains several examples that show how to ensure that your results are
different when that is your intention.

Note You can assume any reference to random numbers in the MATLAB documentation
is actually referring to pseudorandom numbers, unless otherwise stated.

See Also

Related Examples
• “Generate Random Numbers That Are Repeatable” on page 3-11
• “Generate Random Numbers That Are Different” on page 3-15
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Why Do Random Numbers Repeat After Startup?
All the random number functions, rand, randn, randi, and randperm, draw values
from a shared random number generator. Every time you start MATLAB, the generator
resets itself to the same state. Therefore, a command such as rand(2,2) returns the
same result any time you execute it immediately following startup. Also, any script or
function that calls the random number functions returns the same result whenever you
restart.

If you want to avoid repeating the same random number arrays when MATLAB restarts,
then execute the command,

rng('shuffle');

before calling rand, randn, randi, or randperm. This command ensures that you do not
repeat a result from a previous MATLAB session.

If you want to repeat a result that you got at the start of a MATLAB session without
restarting, you can reset the generator to the startup state at any time using

rng('default');

When you execute rng('default'), the ensuing random number commands return
results that match the output of a new MATLAB session. For example,

rng('default');
A = rand(2,2)

A =

    0.8147    0.1270
    0.9058    0.9134

The values in A match the output of rand(2,2) whenever you restart MATLAB.

See Also
rng

 Why Do Random Numbers Repeat After Startup?

3-3



Create Arrays of Random Numbers
There are four fundamental random number functions: rand, randi, randn, and
randperm. The rand function returns real numbers between 0 and 1 that are drawn
from a uniform distribution. For example,

r1 = rand(1000,1);

r1 is a 1000-by-1 column vector containing real floating-point numbers drawn from a
uniform distribution. All the values in r1 are in the open interval (0, 1). A histogram of
these values is roughly flat, which indicates a fairly uniform sampling of numbers.

The randi function returns double integer values drawn from a discrete uniform
distribution. For example,

r2 = randi(10,1000,1);

r2 is a 1000-by-1 column vector containing integer values drawn from a discrete uniform
distribution whose range is 1,2,...,10. A histogram of these values is roughly flat, which
indicates a fairly uniform sampling of integers between 1 and 10.

The randn function returns arrays of real floating-point numbers that are drawn from a
standard normal distribution. For example,

r3 = randn(1000,1);

r3 is a 1000-by-1 column vector containing numbers drawn from a standard normal
distribution. A histogram of r3 looks like a roughly normal distribution whose mean is 0
and standard deviation is 1.

You can use the randperm function to create arrays of random integer values that have
no repeated values. For example,

r4 = randperm(15,5);

r4 is a 1-by-5 array containing randomly selected integer values on the closed interval,
[1, 15]. Unlike randi, which can return an array containing repeated values, the array
returned by randperm has no repeated values.

Successive calls to any of these functions return different results. This behavior is useful
for creating several different arrays of random values.
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See Also
rand | randi | randn | randperm

Related Examples
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Integers” on page 3-7
• “Random Numbers from Normal Distribution with Specific Mean and Variance” on

page 3-8

More About
• “Random Numbers in MATLAB” on page 3-2
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Random Numbers Within a Specific Range
This example shows how to create an array of random floating-point numbers that are
drawn from a uniform distribution in the open interval (50, 100).

By default, rand returns normalized values (between 0 and 1) that are drawn from a
uniform distribution. To change the range of the distribution to a new range, (a, b),
multiply each value by the width of the new range, (b – a) and then shift every value by
a.

First, initialize the random number generator to make the results in this example
repeatable.

rng(0,'twister');

Create a vector of 1000 random values. Use the rand function to draw the values from a
uniform distribution in the open interval, (50,100).

a = 50;
b = 100;
r = (b-a).*rand(1000,1) + a;

Verify the values in r are within the specified range.

r_range = [min(r) max(r)]

r_range =

   50.0261   99.9746

The result is in the open interval, (50,100).

Note Some combinations of a and b make it theoretically possible for your results to
include a or b. In practice, this is extremely unlikely to happen.
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Random Integers
This example shows how to create an array of random integer values that are drawn
from a discrete uniform distribution on the set of numbers –10, –9,...,9, 10.

The simplest randi syntax returns double-precision integer values between 1 and a
specified value, imax. To specify a different range, use the imin and imax arguments
together.

First, initialize the random number generator to make the results in this example
repeatable.

rng(0,'twister');

Create a 1-by-1000 array of random integer values drawn from a discrete uniform
distribution on the set of numbers -10, -9,...,9, 10. Use the syntax, randi([imin
imax],m,n).

r = randi([-10 10],1,1000);

Verify that the values in r are within the specified range.

r_range = [min(r) max(r)]

r_range = 

   -10    10
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Random Numbers from Normal Distribution with Specific Mean
and Variance

This example shows how to create an array of random floating-point numbers that are
drawn from a normal distribution having a mean of 500 and variance of 25.

The randn function returns a sample of random numbers from a normal distribution
with mean 0 and variance 1. The general theory of random variables states that if x is a

random variable whose mean is m
x

 and variance is s
x

2 , then the random variable, y,

defined by y ax b= + ,where a and b are constants, has mean m my xa b= +  and

variance s sy xa
2 22

= .  You can apply this concept to get a sample of normally distributed
random numbers with mean 500 and variance 25.

First, initialize the random number generator to make the results in this example
repeatable.

rng(0,'twister');

Create a vector of 1000 random values drawn from a normal distribution with a mean of
500 and a standard deviation of 5.

a = 5;
b = 500;
y = a.*randn(1000,1) + b;

Calculate the sample mean, standard deviation, and variance.

stats = [mean(y) std(y) var(y)]

stats = 

  499.8368    4.9948   24.9483

The mean and variance are not 500 and 25 exactly because they are calculated from a
sampling of the distribution.
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Random Numbers Within a Sphere
This example shows how to create random points within the volume of a sphere, as
described by Knuth [1]. The sphere in this example is centered at the origin and has a
radius of 3.

One way to create points inside a sphere is to specify them in spherical coordinates. Then
you can convert them to Cartesian coordinates to plot them.

First, initialize the random number generator to make the results in this example
repeatable.

rng(0,'twister')

Calculate an elevation angle for each point in the sphere. These values are in the open
interval, , but are not uniformly distributed.

rvals = 2*rand(1000,1)-1;
elevation = asin(rvals);

Create an azimuth angle for each point in the sphere. These values are uniformly
distributed in the open interval, .

azimuth = 2*pi*rand(1000,1);

Create a radius value for each point in the sphere. These values are in the open interval,
, but are not uniformly distributed.

radii = 3*(rand(1000,1).^(1/3));

Convert to Cartesian coordinates and plot the result.

[x,y,z] = sph2cart(azimuth,elevation,radii);
figure
plot3(x,y,z,'.')
axis equal
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If you want to place random numbers on the surface of the sphere, then specify a
constant radius value to be the last input argument to sph2cart. In this case, the value
is 3.

[x,y,z] = sph2cart(azimuth,elevation,3);

References

[1] Knuth, D. The Art of Computer Programming. Vol. 2, 3rd ed. Reading, MA: Addison-
Wesley Longman, 1998, pp. 134–136.
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Generate Random Numbers That Are Repeatable

Specify the Seed
This example shows how to repeat arrays of random numbers by specifying the seed first.
Every time you initialize the generator using the same seed, you always get the same
result.

First, initialize the random number generator to make the results in this example
repeatable.

rng('default');

Now, initialize the generator using a seed of 1.

rng(1);

Then, create an array of random numbers.

A = rand(3,3)

A =

    0.4170    0.3023    0.1863
    0.7203    0.1468    0.3456
    0.0001    0.0923    0.3968

Repeat the same command.

A = rand(3,3)

A =

    0.5388    0.2045    0.6705
    0.4192    0.8781    0.4173
    0.6852    0.0274    0.5587

The first call to rand changed the state of the generator, so the second result is different.

Now, reinitialize the generator using the same seed as before. Then reproduce the first
matrix, A.

rng(1);
A = rand(3,3)
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A =

    0.4170    0.3023    0.1863
    0.7203    0.1468    0.3456
    0.0001    0.0923    0.3968

In some situations, setting the seed alone will not guarantee the same results. This is
because the generator that the random number functions draw from might be different
than you expect when your code executes. For long-term repeatability, specify the seed
and the generator type together.

For example, the following code sets the seed to 1 and the generator to Mersenne
Twister.

rng(1,'twister');

Set the seed and generator type together when you want to:

• Ensure that the behavior of code you write today returns the same results when you
run that code in a future MATLAB release.

• Ensure that the behavior of code you wrote in a previous MATLAB release returns
the same results using the current release.

• Repeat random numbers in your code after running someone else’s random number
code.

See the rng reference page for a list of available generators.

Save and Restore the Generator Settings

This example shows how to create repeatable arrays of random numbers by saving and
restoring the generator settings. The most common reason to save and restore generator
settings is to reproduce the random numbers generated at a specific point in an
algorithm or iteration. For example, you can use the generator settings as an aid in
debugging.

First, initialize the random number generator to make the results in this example
repeatable.

rng(1,'twister');

Save the generator settings in a structure s.
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s = rng;

Create an array of random integer values between 1 and 10.

A = randi(10,3,3)

A = 

     5     4     2
     8     2     4
     1     1     4

Repeat the same command.

A = randi(10,3,3)

A = 

     6     3     7
     5     9     5
     7     1     6

The first call to randi changed the state of the generator, so the second result is
different.

Now, return the generator to the original state stored in s and reproduce the first array
A.

rng(s);
A = randi(10,3,3)

A = 

     5     4     2
     8     2     4
     1     1     4

Unlike reseeding, which reinitializes the generator, this approach allows you to save and
restore the generator settings at any point.
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See Also
rng

Related Examples
• “Generate Random Numbers That Are Different” on page 3-15

More About
• “Random Numbers in MATLAB” on page 3-2
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Generate Random Numbers That Are Different
This example shows how to avoid repeating the same random number arrays when
MATLAB restarts. This technique is useful when you want to combine results from the
same random number commands executed different MATLAB sessions.

All the random number functions, rand, randn, randi, and randperm, draw values
from a shared random number generator. Every time you start MATLAB, the generator
resets itself to the same state. Therefore, a command such as rand(2,2) returns the
same result any time you execute it immediately following startup. Also, any script or
function that calls the random number functions returns the same result whenever you
restart.

One way to get different random numbers is to initialize the generator using a different
seed every time. Doing so ensures that you don’t repeat results from a previous session.

Execute the rng('shuffle') command once in your MATLAB session before calling
any of the random number functions.
rng('shuffle')

You can execute this command in a MATLAB Command Window, or you can add it to
your startup file, which is a special script that MATLAB executes every time you restart.

Now, execute a random number command.
A = rand(2,2);

Each time you call rng('shuffle'), it reseeds the generator using a different seed
based on the current time.

Alternatively, specify different seeds explicitly. For example,
rng(1);
A = rand(2,2);
rng(2);
B = rand(2,2);

Arrays A and B are different because the generator is initialized with a different seed
before each call to the rand function.

Note Frequent reseeding of the generator does not improve the statistical properties of
the output and does not make the output more random in any real sense. Reseeding can
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be useful when you restart MATLAB or before you run a large calculation involving
random numbers. However, reseeding the generator too frequently within a session is
not a good idea because the statistical properties of your random numbers can be
adversely affected.

See Also
rng

Related Examples
• “Generate Random Numbers That Are Repeatable” on page 3-11

More About
• “Random Numbers in MATLAB” on page 3-2
• “Startup Options in MATLAB Startup File”
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Managing the Global Stream
rand, randn, and randi draw random numbers from an underlying random number
stream, called the global stream. The rng function provides a simple way to control the
global stream. For more comprehensive control, the RandStream class allows you to get
a handle to the global stream and control random number generation.

Get a handle to the global stream as follows:

globalStream = RandStream.getGlobalStream
globalStream = 

mt19937ar random stream (current global stream)
             Seed: 0
  NormalTransform: Ziggurat

Return the properties of the stream with the get method:

get(globalStream)
             Type: 'mt19937ar'
       NumStreams: 1
      StreamIndex: 1
        Substream: 1
             Seed: 0
            State: [625x1 uint32]
  NormalTransform: 'Ziggurat'
       Antithetic: 0
    FullPrecision: 1

Now, use the rand function to generate uniform random values from the global stream.

rand(1,5);

Use the randn and randi functions to generate normal random values and integer
random values from the global stream.

A = randi(100,1,5);
A = randn(1,5);

The State property is the internal state of the generator. You can save the State of
globalStream.

myState = globalStream.State;
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Using myState, you can restore the state of globalStream and reproduce previous
results.

myState = globalStream.State;
A = rand(1,100);
globalStream.State = myState;
B=rand(1,100);
isequal(A,B)

ans =

     1

rand, randi, and randn access the global stream. Since all of these functions access the
same underlying stream, a call to one affects the values produced by the others at
subsequent calls.

globalStream.State = myState;
A = rand(1,100);
globalStream.State = myState;
randi(100);
B = rand(1,100);
isequal(A,B)

ans =

     0

The global stream is a handle object of the RandStream class.
RandStream.getGlobalStream returns a handle. The properties of the global stream
can be viewed or modified from any handle to the stream.

stream1=RandStream.getGlobalStream;
stream2=RandStream.getGlobalStream;
stream1.NormalTransform='Polar';
stream2.NormalTransform
ans =

Polar

The following table shows the methods available for the RandStream class. Static
methods are indicated with the syntax RandStream.methodName.
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Method Description
RandStream Create a random number stream
RandStream.create Create multiple independent random

number streams
get Get the properties of a random stream
RandStream.list List available random number generator

algorithms
RandStream.getGlobalStream Get the global random number stream
RandStream.setGlobalStream Set the global random number stream
set Set a property of a random stream
reset Reset a stream to its initial internal state
rand Generate pseudorandom numbers from a

uniform distribution
randn Generate pseudorandom numbers from a

standard normal distribution
randi Generate pseudorandom integers from a

uniform discrete distribution
randperm Random permutation of a set of values

The properties of a random stream are given the following table.
Property Description
Type (Read-only) Generator algorithm used by

the stream. RandStream.list specifies
the possible generators.

Seed (Read-only) Seed value used to create the
stream.

NumStreams (Read-only) Number of streams in the
group in which the current stream was
created.

StreamIndex (Read-only) Index of the current stream
from among the group of streams with
which the current stream was created.
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Property Description
State Internal state of the generator. Do not

depend on the format of this property. The
value you assign to S.State must be a
value previously read from S.State.

Substream Index of the substream to which the stream
is currently set. The default is 1. Multiple
substreams are not supported by all
generator types; the multiplicative lagged
Fibonacci generator (mlfg6331_64) and
combined multiple recursive generator
(mrg32k3a) support substreams.

NormalTransform Transformation algorithm used by
randn(s, ...) to generate normal
pseudorandom values. Possible values are
'Ziggurat', 'Polar', or 'Inversion'.

Antithetic Logical value indicating whether S
generates antithetic pseudorandom values.
For uniform values, these are the usual
values subtracted from 1. The default is
false.

FullPrecision Logical value indicating whether s
generates values using its full precision.
Some generators can create pseudorandom
values faster, but with fewer random bits,
if FullPrecision is false. The default is
true.

Suppose you want to repeat a simulation. The RandStream class gives you several ways
to replicate output. As shown in the previous example, you can save the state of the
global stream.

myState=GlobalStream.State;
A=rand(1,100);
GlobalStream.State=myState;
B=rand(1,100);
isequal(A,B)
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ans =

     1

You can also reset a stream to its initial settings with the method reset.

reset(GlobalStream)
A=rand(1,100);
reset(GlobalStream)
B=rand(1,100);
isequal(A,B)

ans =

     1

Random Number Data Types
rand and randn generate values in double precision by default.

GlobalStream=RandStream.getGlobalStream;
myState=GlobalStream.State;
A=rand(1,5);
class(A)

ans =

double

To specify the class as double explicitly:
GlobalStream.State=myState;
B=rand(1,5,'double');
class(B)

ans =

double
isequal(A,B)

ans =

     1

rand and randn will also generate values in single precision.
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GlobalStream.State=myState;
A=rand(1,5,'single');
class(A)
ans =

single

The values are the same as if you had cast the double precision values from the previous
example. The random stream that the functions draw from advances the same way
regardless of what class of values is returned.

A,B

A =

    0.8235    0.6948    0.3171    0.9502    0.0344

B =

    0.8235    0.6948    0.3171    0.9502    0.0344

randi supports both integer types and single or double precision.

A=randi([1 10],1,5,'double');
class(A)

ans =

double
B=randi([1 10],1,5,'uint8');
class(B)

ans =

uint8
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Creating and Controlling a Random Number Stream
In this section...
“Substreams” on page 3-24
“Choosing a Random Number Generator” on page 3-25

The RandStream class allows you to create a random number stream. This is useful for
several reasons. For example, you might want to generate random values without
affecting the state of the global stream. You might want separate sources of randomness
in a simulation. Or you may need to use a different generator algorithm than the one
MATLAB software uses at startup. With the RandStream constructor, you can create
your own stream, set the writable properties, and use it to generate random numbers.
You can control the stream you create the same way you control the global stream. You
can even replace the global stream with the stream you create.

To create a stream, use the RandStream constructor.

myStream=RandStream('mlfg6331_64');
rand(myStream,1,5)

ans =

    0.6530    0.8147    0.7167    0.8615    0.0764

The random stream myStream acts separately from the global stream. The functions
rand, randn, and randi will continue to draw from the global stream, and will not affect
the results of the RandStream methods rand, randn and randi applied to myStream.

You can make myStream the global stream using the RandStream.setGlobalStream
method.

RandStream.setGlobalStream(myStream)
RandStream.getGlobalStream

ans = 

mlfg6331_64 random stream (current global stream)
             Seed: 0
  NormalTransform: Ziggurat

RandStream.getGlobalStream==myStream
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ans =

     1

Substreams

You may want to return to a previous part of a simulation. A random stream can be
controlled by having it jump to fixed checkpoints, called substreams. The Substream
property allows you to jump back and forth among multiple substreams. To use the
Substream property, create a stream using a generator that supports substreams. (See
“Choosing a Random Number Generator” on page 3-25 for a list of generator algorithms
and their properties.)

stream=RandStream('mlfg6331_64');
RandStream.setGlobalStream(stream)

The initial value of Substream is 1.

stream.Substream

ans =

     1

Substreams are useful in serial computation. Substreams can recreate all or part of a
simulation by returning to a particular checkpoint in stream. For example, they can be
used in loops.

for i=1:5
    stream.Substream=i;
    rand(1,i)
end

ans =
    0.6530

ans =
    0.3364    0.8265

ans =
    0.9539    0.6446    0.4913
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ans =
    0.0244    0.5134    0.6305    0.6534

ans =
    0.3323    0.9296    0.5767    0.1233    0.6934

Each of these substreams can reproduce its loop iteration. For example, you can return to
the 5th substream. The result will return the same values as the 5th output above.

stream.Substream=5;
rand(1,5)

ans =

    0.3323    0.9296    0.5767    0.1233    0.6934

Choosing a Random Number Generator

MATLAB offers several generator algorithm options. The following table summarizes the
key properties of the available generator algorithms and the keywords used to create
them. To return a list of all the available generator algorithms, use the
RandStream.list method.
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Generator algorithms

Keyword Generator Multiple Stream and
Substream Support

Approximate Period In
Full Precision

mt19937ar Mersenne twister
(default)

No
2 1

19937
-

dsfmt19937 SIMD-oriented fast
Mersenne twister

No
2 1

19937
-

mcg16807 Multiplicative
congruential
generator

No
2 2

31
-

mlfg6331_64 Multiplicative lagged
Fibonacci generator

Yes
2

124

mrg32k3a Combined multiple
recursive generator

Yes
2

191

shr3cong Shift-register
generator summed
with linear
congruential
generator

No
2

64

swb2712 Modified subtract
with borrow
generator

No
2

1492

Some of the generators (mcg16807, shr3cong, swb2712) provide for backwards
compatibility with earlier versions of MATLAB. Two generators (mrg32k3a,
mlfg6331_64) provide explicit support for parallel random number generation. The
remaining generators (mt19937ar, dsfmt19937) are designed primarily for sequential
applications. Depending on the application, some generators may be faster or return
values with more precision.

Another reason for the choice of generators has to do with applications. All
pseudorandom number generators are based on deterministic algorithms, and all will fail
a sufficiently specific statistical test for randomness. One way to check the results of a
Monte Carlo simulation is to rerun the simulation with two or more different generator
algorithms, and MATLAB software's choice of generators provide you with the means to
do that. Although it is unlikely that your results will differ by more than Monte Carlo
sampling error when using different generators, there are examples in the literature
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where this kind of validation has turned up flaws in a particular generator algorithm
(see [13] for an example).

Generator Algorithms

mcg16807
A 32-bit multiplicative congruential generator, as described in [14], with multiplier

a = 7
5 , modulo m = -2 1

31 . This generator has a period of 2 2
31

-  and does not
support multiple streams or substreams. Each U(0,1) value is created using a single

32-bit integer from the generator; the possible values are all multiples of ( )2 1
31 1

-

-

strictly within the interval (0,1). The randn algorithm used by default for
mcg16807 streams is the polar algorithm (described in [1]). Note: This generator is
identical to the one used beginning in MATLAB Version 4 by both the rand and
randn functions, activated using rand('seed',s) or randn('seed',s).

mlfg6331_64
A 64-bit multiplicative lagged Fibonacci generator, as described in [10], with lags
l = 63 , k = 31 . This generator is similar to the MLFG implemented in the SPRNG

package. It has a period of approximately 2
124 . It supports up to 2

61  parallel

streams, via parameterization, and 2
51  substreams each of length 2

72 . Each U(0,1)
value is created using one 64-bit integer from the generator; the possible values are

all multiples of 2 64-  strictly within the interval (0,1). The randn algorithm used by
default for mlfg6331_64 streams is the ziggurat algorithm [7], but with the
mlfg6331_64 generator underneath.

mrg32k3a
A 32-bit combined multiple recursive generator, as described in [2]. This generator is
similar to the CMRG implemented in the RngStreams package. It has a period of

2
191  and supports up to 2

63  parallel streams via sequence splitting, each of length

2
127 . It also supports 2

51  substreams, each of length 2
76 . Each U(0,1) value is

created using two 32-bit integers from the generator; the possible values are

multiples of 2
53-  strictly within the interval (0,1). The randn algorithm used by

default for mrg32k3a streams is the ziggurat algorithm [7], but with the mrg32k3a
generator underneath.

 Creating and Controlling a Random Number Stream

3-27



mt19937ar

The Mersenne Twister, as described in [11], has period 2 1
19937

-  and each U(0,1)

value is created using two 32-bit integers. The possible values are multiples of 2
53-

in the interval (0,1). This generator does not support multiple streams or substreams.
The randn algorithm used by default for mt19937ar streams is the ziggurat
algorithm [7], but with the mt19937ar generator underneath. Note: This generator
is identical to the one used by the rand function beginning in MATLAB Version 7,
activated by rand('twister',s).

dsfmt19937
The Double precision SIMD-oriented Fast Mersenne Twister, as described in [12], is

a faster implementation of the Mersenne Twister algorithm. The period is 2 1
19937

-

and the possible values are multiples of 2
52-  in the interval (0,1). The generator

produces double precision values in [1,2) natively, which are transformed to create
U(0,1) values. This generator does not support multiple streams or substreams.

shr3cong
Marsaglia's SHR3 shift-register generator summed with a linear congruential

generator with multiplier a = 69069 , addend b = 1234567 , and modulus 2
32- . SHR3

is a 3-shift-register generator defined as u u= + + +( )( )( )I L I R I L
13 17 5 , where I  is the

identity operator, L  is the left shift operator, and R is the right shift operator. The
combined generator (the SHR3 part is described in [7]) has a period of approximately

2
64 . This generator does not support multiple streams or substreams. Each U(0,1)

value is created using one 32-bit integer from the generator; the possible values are

all multiples of 2
32-  strictly within the interval (0,1). The randn algorithm used by

default for shr3cong streams is the earlier form of the ziggurat algorithm [9], but
with the shr3cong generator underneath. This generator is identical to the one used
by the randn function beginning in MATLAB Version 5, activated using
randn('state',s).

Note The SHR3 generator used in [6] (1999) differs from the one used in [7] (2000).
MATLAB uses the most recent version of the generator, presented in [7].
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swb2712
A modified Subtract-with-Borrow generator, as described in [8]. This generator is
similar to an additive lagged Fibonacci generator with lags 27 and 12, but is modified

to have a much longer period of approximately 2
1492 . The generator works natively

in double precision to create U(0,1) values, and all values in the open interval (0,1)
are possible. The randn algorithm used by default for swb2712 streams is the
ziggurat algorithm [7], but with the swb2712 generator underneath. Note: This
generator is identical to the one used by the rand function beginning in MATLAB
Version 5, activated using rand('state',s).

Transformation Algorithms

Inversion
Computes a normal random variate by applying the standard normal inverse
cumulative distribution function to a uniform random variate. Exactly one uniform
value is consumed per normal value.

Polar
The polar rejection algorithm, as described in [1]. Approximately 1.27 uniform values
are consumed per normal value, on average.

Ziggurat
The ziggurat algorithm, as described in [7]. Approximately 2.02 uniform values are
consumed per normal value, on average.

References

[1] Devroye, L. Non-Uniform Random Variate Generation, Springer-Verlag, 1986.

[2] L’Ecuyer, P. “Good Parameter Sets for Combined Multiple Recursive Random
Number Generators”, Operations Research, 47(1): 159–164. 1999.

[3] L'Ecuyer, P. and S. Côté. “Implementing A Random Number Package with Splitting
Facilities”, ACM Transactions on Mathematical Software, 17: 98–111. 1991.

[4] L'Ecuyer, P. and R. Simard. “TestU01: A C Library for Empirical Testing of Random
Number Generators,” ACM Transactions on Mathematical Software, 33(4):
Article 22. 2007.

 Creating and Controlling a Random Number Stream

3-29



[5] L'Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. “An Objected-Oriented
Random-Number Package with Many Long Streams and Substreams.”
Operations Research, 50(6):1073–1075. 2002.

[6] Marsaglia, G. “Random numbers for C: The END?” Usenet posting to sci.stat.math.
1999. Available online at http://groups.google.com/group/sci.crypt/
browse_thread/
thread/ca8682a4658a124d/.

[7] Marsaglia G., and W. W. Tsang. “The ziggurat method for generating random
variables.” Journal of Statistical Software, 5:1–7. 2000. Available online at
http://www.jstatsoft.org/v05/i08.

[8] Marsaglia, G., and A. Zaman. “A new class of random number generators.” Annals of
Applied Probability 1(3):462–480. 1991.

[9] Marsaglia, G., and W. W. Tsang. “A fast, easily implemented method for sampling
from decreasing or symmetric unimodal density functions.” SIAM
J.Sci.Stat.Comput. 5(2):349–359. 1984.

[10] Mascagni, M., and A. Srinivasan. “Parameterizing Parallel Multiplicative Lagged-
Fibonacci Generators.” Parallel Computing, 30: 899–916. 2004.

[11] Matsumoto, M., and T. Nishimura.“Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudorandom Number Generator.” ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30. 1998.

[12] Matsumoto, M., and M. Saito.“A PRNG Specialized in Double Precision Floating
Point Numbers Using an Affine Transition.” Monte Carlo and Quasi-Monte Carlo
Methods 2008, 10.1007/978-3-642-04107-5_38. 2009.

[13] Moler, C.B. Numerical Computing with MATLAB. SIAM, 2004. Available online at
http://www.mathworks.com/moler

[14] Park, S.K., and K.W. Miller. “Random Number Generators: Good Ones Are Hard to
Find.” Communications of the ACM, 31(10):1192–1201. 1998.

3 Random Numbers

3-30

http://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
http://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
http://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
http://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
http://www.jstatsoft.org/v05/i08
http://www.mathworks.com/moler


Multiple Streams
MATLAB software includes generator algorithms that allow you to create multiple
independent random number streams. The RandStream.create factory method allows
you to create three streams that have the same generator algorithm and seed value but
are statistically independent.

[s1,s2,s3]=RandStream.create('mlfg6331_64','NumStreams',3)

s1 = 

mlfg6331_64 random stream
      StreamIndex: 1
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

s2 = 

mlfg6331_64 random stream
      StreamIndex: 2
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

s3 = 

mlfg6331_64 random stream
      StreamIndex: 3
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

As evidence of independence, you can see that these streams are largely uncorrelated.

r1=rand(s1,100000,1);
r2=rand(s2,100000,1); 
r3=rand(s3,100000,1);
corrcoef([r1,r2,r3])

ans =

    1.0000   -0.0017   -0.0010
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   -0.0017    1.0000   -0.0050
   -0.0010   -0.0050    1.0000

By using different seeds, you can create streams that return different values and act
separately from one another.
s1=RandStream('mt19937ar','seed',1);
s2=RandStream('mt19937ar','seed',2);
s3=RandStream('mt19937ar','seed',3);

Seed values must be integers between 0 and 2 1
32

- . With different seeds, streams
typically return values that are uncorrelated.
r1=rand(s1,100000,1);
r2=rand(s2,100000,1);
r3=rand(s3,100000,1);
corrcoef([r1,r2,r3])

ans =

    1.0000    0.0030    0.0045
    0.0030    1.0000   -0.0015
    0.0045   -0.0015    1.0000

For generator types that do not explicitly support independent streams, different seeds
provide a method to create multiple streams. However, using a generator specifically
designed for multiple independent streams is a better option, as the statistical properties
across streams are better understood.

Depending on the application, it might be useful to create only some of the streams in a
set of independent streams. The StreamIndex property returns the index of a specified
stream from a set of factory-generated streams.
numLabs=256;
labIndex=4;
s1=RandStream.create('mlfg6331_64',
        'NumStreams',numLabs,'StreamIndices',labIndex)

s1=
mlfg6331_64 random stream
      StreamIndex: 4
       NumStreams: 256
             Seed: 0
         NormalTransform: Ziggurat
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Multiple streams, since they are statistically independent, can be used to verify the
precision of a simulation. For example, a set of independent streams can be used to
repeat a Monte Carlo simulation several times in different MATLAB sessions or on
different processors and determine the variance in the results. This makes multiple
streams useful in large-scale parallel simulations.

Note Not all generators algorithms support multiple streams. See the table of generator
algorithms in “Choosing a Random Number Generator” on page 3-25 for a summary of
generator properties.
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Replace Discouraged Syntaxes of rand and randn
In this section...
“Description of the Discouraged Syntaxes” on page 3-34
“Description of Replacement Syntaxes” on page 3-34
“Replacement Syntaxes for Initializing the Generator with an Integer Seed” on page 3-
35
“Replacement Syntaxes for Initializing the Generator with a State Vector” on page 3-36
“If You Are Unable to Upgrade from Discouraged Syntax” on page 3-37

Description of the Discouraged Syntaxes
In earlier versions of MATLAB, you controlled the random number generator used by the
rand and randn functions with the 'seed', 'state' or 'twister' inputs. For
example:

rand('seed',sd)
randn('seed',sd)
rand('state',s)
randn('state',s)
rand('twister',5489)

These syntaxes referred to different types of generators, and they are no longer
recommended for the following reasons:

• The terms 'seed' and 'state' are misleading names for the generators.
• All of the generators except 'twister' are flawed.
• They unnecessarily use different generators for rand and randn.

To assess the impact of replacing discouraged syntaxes in your existing code, execute the
following commands at the start of your MATLAB session:
warning('on','MATLAB:RandStream:ActivatingLegacyGenerators')
warning('on','MATLAB:RandStream:ReadingInactiveLegacyGeneratorState') 

Description of Replacement Syntaxes
Use the rng function to control the shared generator used by rand, randn, randi and
all other random number generation functions like randperm, sprand, and so on. To
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learn how to use the rng function when replacing discouraged syntaxes, take a few
moments to understand their function. This should help you to see which new rng syntax
best suits your needs.

The first input to rand(Generator,s) or randn(Generator,s) specified the type of
the generator, as described here.
Generator = 'seed' referred to the MATLAB v4 generator, not to the seed
initialization value.

Generator = 'state' referred to the MATLAB v5 generators, not to the internal
state of the generator.

Generator = 'twister' referred to the Mersenne Twister generator, now the
MATLAB startup generator.

The v4 and v5 generators are no longer recommended unless you are trying to exactly
reproduce the random numbers generated in earlier versions of MATLAB. The simplest
way to update your code is to use rng. The rng function replaces the names for the rand
and randn generators as follows.
rand/randn Generator Name rng Generator Name
'seed' 'v4'

'state'
'v5uniform' (for rand)
                  or
'v5normal' (for randn)

'twister' 'twister' (recommended)

Replacement Syntaxes for Initializing the Generator with an Integer
Seed
The most common uses of the integer seed sd in the rand(Generator,sd) syntax were
to:

• Reproduce exactly the same random numbers each time (e.g., by using a seed such as
0, 1, or 3141879)

• Try to ensure that MATLAB always gives different random numbers in separate runs
(for example, by using a seed such as sum(100*clock))

The following table shows replacements for syntaxes with an integer seed sd.
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• The first column shows the discouraged syntax with rand and randn.
• The second column shows how to exactly reproduce the discouraged behavior with the

new rng function. In most cases, this is done by specifying a legacy generator type
such as the v4 or v5 generators, which is no longer recommended.

• The third column shows the recommended alternative, which does not specify the
optional generator type input to rng. Therefore, if you always omit the Generator
input, rand, randn, and randi just use the default Mersenne Twister generator that
is used at MATLAB startup. In future releases when new generators supersede the
Mersenne Twister, this code will use the new default.

Discouraged rand/randn Syntax Not Recommended: Reproduce
Discouraged Behavior Exactly By
Specifying Generator Type

Recommended
Alternative: Does Not
Override Generator
Type

rand('twister',5489) rng(5489,'twister') rng('default')
rand('seed',sd) rng(sd,'v4')

rng(sd)randn('seed',sd)
rand('state',sd) rng(sd,'v5uniform')
randn('state',sd) rng(sd,'v5normal')
rand('seed',sum(100*clock)) rng(sum(100*clock),'v4') rng('shuffle')

Replacement Syntaxes for Initializing the Generator with a State Vector

The most common use of the state vector (shown here as st) in the
rand(Generator,st) syntax was to reproduce exactly the random numbers generated
at a specific point in an algorithm or iteration. For example, you could use this vector as
an aid in debugging.

The rng function changes the pattern of saving and restoring the state of the random
number generator as shown in the next table. The example in the left column assumes
that you are using the v5 uniform generator. The example in the right column uses the
new syntax, and works for any generator you use.
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Discouraged Syntax Using rand/randn New Syntax Using rng
% Save v5 generator state.
st = rand('state');

% Call rand.
x = rand;

% Restore v5 generator state.
rand('state',st);

% Call rand again and hope 
% for the same results.
y = rand

% Get generator settings.
s = rng;

% Call rand.
x = rand;

% Restore previous generator 
% settings.
rng(s);

% Call rand again and 
% get the same results.
y = rand

For a demonstration, see this instructional video.

If You Are Unable to Upgrade from Discouraged Syntax
If there is code that you are not able or not permitted to modify and you know that it uses
the discouraged random number generator control syntaxes, it is important to remember
that when you use that code MATLAB will switch into legacy mode. In legacy mode,
rand and randn are controlled by separate generators, each with their own settings.

Calls to rand in legacy mode use one of the following:

• The 'v4' generator, controlled by rand('seed', ...)
• The 'v5uniform' generator, controlled by rand('state', ...)
• The 'twister' generator, controlled by rand('twister', ...)

Calls to randn in legacy mode use one of the following:

• The 'v4' generator, controlled by randn('seed', ...)
• The 'v5normal' generator, controlled by randn('state', ...)

If code that you rely on puts MATLAB into legacy mode, use the following command to
escape legacy mode and get back to the default startup generator:

rng default

Alternatively, to guard around code that puts MATLAB into legacy mode, use:
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s = rng     % Save current settings of the generator.
  ...       % Call code using legacy random number generator syntaxes.
rng(s)      % Restore previous settings of the generator.
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Sparse Matrices

• “Computational Advantages of Sparse Matrices” on page 4-2
• “Constructing Sparse Matrices” on page 4-4
• “Accessing Sparse Matrices” on page 4-10
• “Sparse Matrix Operations” on page 4-18
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Computational Advantages of Sparse Matrices
In this section...
“Memory Management” on page 4-2
“Computational Efficiency” on page 4-3

Memory Management

Using sparse matrices to store data that contains a large number of zero-valued elements
can both save a significant amount of memory and speed up the processing of that data.
sparse is an attribute that you can assign to any two-dimensional MATLAB matrix that
is composed of double or logical elements.

The sparse attribute allows MATLAB to:

• Store only the nonzero elements of the matrix, together with their indices.
• Reduce computation time by eliminating operations on zero elements.

For full matrices, MATLAB stores every matrix element internally. Zero-valued elements
require the same amount of storage space as any other matrix element. For sparse
matrices, however, MATLAB stores only the nonzero elements and their indices. For
large matrices with a high percentage of zero-valued elements, this scheme significantly
reduces the amount of memory required for data storage.

The whos command provides high-level information about matrix storage, including size
and storage class. For example, this whos listing shows information about sparse and full
versions of the same matrix.

M_full = magic(1100);          % Create 1100-by-1100 matrix.
M_full(M_full > 50) = 0;       % Set elements >50 to zero.
M_sparse = sparse(M_full);     % Create sparse matrix of same.

whos
  Name             Size                Bytes  Class     Attributes

  M_full        1100x1100            9680000  double              
  M_sparse      1100x1100               9608  double    sparse 

Notice that the number of bytes used is fewer in the sparse case, because zero-valued
elements are not stored.
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Computational Efficiency

Sparse matrices also have significant advantages in terms of computational efficiency.
Unlike operations with full matrices, operations with sparse matrices do not perform
unnecessary low-level arithmetic, such as zero-adds (x+0 is always x). The resulting
efficiencies can lead to dramatic improvements in execution time for programs working
with large amounts of sparse data.

See Also

More About
• “Sparse Matrix Operations” on page 4-18
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Constructing Sparse Matrices

In this section...
“Creating Sparse Matrices” on page 4-4
“Importing Sparse Matrices” on page 4-8

Creating Sparse Matrices
• “Converting Full to Sparse” on page 4-4
• “Creating Sparse Matrices Directly” on page 4-5
• “Creating Sparse Matrices from Their Diagonal Elements” on page 4-7

MATLAB never creates sparse matrices automatically. Instead, you must determine if a
matrix contains a large enough percentage of zeros to benefit from sparse techniques.

The density of a matrix is the number of nonzero elements divided by the total number of
matrix elements. For matrix M, this would be

nnz(M) / prod(size(M));

or

nnz(M) / numel(M);

Matrices with very low density are often good candidates for use of the sparse format.

Converting Full to Sparse

You can convert a full matrix to sparse storage using the sparse function with a single
argument.

S = sparse(A)

For example:

A = [ 0   0   0   5
      0   2   0   0
      1   3   0   0
      0   0   4   0];
S = sparse(A)
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produces
 S =
     
   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

The printed output lists the nonzero elements of S, together with their row and column
indices. The elements are sorted by columns, reflecting the internal data structure.

You can convert a sparse matrix to full storage using the full function, provided the
matrix order is not too large. For example A = full(S) reverses the example
conversion.

Converting a full matrix to sparse storage is not the most frequent way of generating
sparse matrices. If the order of a matrix is small enough that full storage is possible, then
conversion to sparse storage rarely offers significant savings.

Creating Sparse Matrices Directly

You can create a sparse matrix from a list of nonzero elements using the sparse
function with five arguments.
S = sparse(i,j,s,m,n)

i and j are vectors of row and column indices, respectively, for the nonzero elements of
the matrix. s is a vector of nonzero values whose indices are specified by the
corresponding (i,j) pairs. m is the row dimension for the resulting matrix, and n is the
column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

S =

   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

 Constructing Sparse Matrices

4-5



The sparse command has a number of alternate forms. The example above uses a form
that sets the maximum number of nonzero elements in the matrix to length(s). If
desired, you can append a sixth argument that specifies a larger maximum, allowing you
to add nonzero elements later without reallocating the sparse matrix.

The matrix representation of the second difference operator is a good example of a sparse
matrix. It is a tridiagonal matrix with -2s on the diagonal and 1s on the super- and
subdiagonal. There are many ways to generate it—here's one possibility.

D = sparse(1:n,1:n,-2*ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'

For n = 5, MATLAB responds with

S =

   (1,1)       -2
   (2,1)        1
   (1,2)        1
   (2,2)       -2
   (3,2)        1
   (2,3)        1
   (3,3)       -2
   (4,3)        1
   (3,4)        1
   (4,4)       -2
   (5,4)        1
   (4,5)        1
   (5,5)       -2

Now F = full(S) displays the corresponding full matrix.

F = full(S)

F =

    -2     1     0     0     0
     1    -2     1     0     0
     0     1    -2     1     0
     0     0     1    -2     1
     0     0     0     1    -2
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Creating Sparse Matrices from Their Diagonal Elements

Creating sparse matrices based on their diagonal elements is a common operation, so the
function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

To create an output matrix S of size m-by-n with elements on p diagonals:

• B is a matrix of size min(m,n)-by-p. The columns of B are the values to populate the
diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals of S to
populate.

That is, the elements in column j of B fill the diagonal specified by element j of d.

Note If a column of B is longer than the diagonal it's replacing, super-diagonals are taken
from the lower part of the column of B, and sub-diagonals are taken from the upper part
of the column of B.

As an example, consider the matrix B and the vector d.

B = [ 41    11     0
      52    22     0
      63    33    13
      74    44    24 ];

d = [-3
      0
      2];

Use these matrices to create a 7-by-4 sparse matrix A:

A = spdiags(B,d,7,4)

A =

   (1,1)       11
   (4,1)       41
   (2,2)       22
   (5,2)       52
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   (1,3)       13
   (3,3)       33
   (6,3)       63
   (2,4)       24
   (4,4)       44
   (7,4)       74

In its full form, A looks like this:

full(A)

ans =

    11     0    13     0
     0    22     0    24
     0     0    33     0
    41     0     0    44
     0    52     0     0
     0     0    63     0
     0     0     0    74

spdiags can also extract diagonal elements from a sparse matrix, or replace matrix
diagonal elements with new values. Type help spdiags for details.

Importing Sparse Matrices

You can import sparse matrices from computations outside the MATLAB environment.
Use the spconvert function in conjunction with the load command to import text files
containing lists of indices and nonzero elements. For example, consider a three-column
text file T.dat whose first column is a list of row indices, second column is a list of
column indices, and third column is a list of nonzero values. These statements load
T.dat into MATLAB and convert it into a sparse matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as binary data in
MAT-files.

See Also
sparse | spconvert
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More About
• “Sparse Matrix Operations” on page 4-18

 See Also
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Accessing Sparse Matrices

In this section...
“Nonzero Elements” on page 4-10
“Indices and Values” on page 4-12
“Indexing in Sparse Matrix Operations” on page 4-12
“Visualizing Sparse Matrices” on page 4-15

Nonzero Elements

There are several commands that provide high-level information about the nonzero
elements of a sparse matrix:

• nnz returns the number of nonzero elements in a sparse matrix.
• nonzeros returns a column vector containing all the nonzero elements of a sparse

matrix.
• nzmax returns the amount of storage space allocated for the nonzero entries of a

sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the Harwell-
Boeing collection.

load west0479
whos

  Name            Size             Bytes  Class     Attributes

  west0479      479x479            34032  double    sparse   

This matrix models an eight-stage chemical distillation column.

Try these commands.

nnz(west0479)

ans =

        1887
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format short e
west0479

west0479 =

  (25,1)      1.0000e+00
  (31,1)     -3.7648e-02
  (87,1)     -3.4424e-01
  (26,2)      1.0000e+00
  (31,2)     -2.4523e-02
  (88,2)     -3.7371e-01
  (27,3)      1.0000e+00
  (31,3)     -3.6613e-02
  (89,3)     -8.3694e-01
  (28,4)      1.3000e+02
     .
     .
     .

nonzeros(west0479)

ans =

   1.0000e+00
  -3.7648e-02
  -3.4424e-01
   1.0000e+00
  -2.4523e-02
  -3.7371e-01
   1.0000e+00
  -3.6613e-02
  -8.3694e-01
   1.3000e+02
    .
    .
    .

Note Use Ctrl+C to stop the nonzeros listing at any time.

Note that initially nnz has the same value as nzmax by default. That is, the number of
nonzero elements is equivalent to the number of storage locations allocated for nonzeros.
However, MATLAB does not dynamically release memory if you zero out additional array
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elements. Changing the value of some matrix elements to zero changes the value of nnz,
but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired. You are not
constrained by the original value of nzmax.

Indices and Values

For any matrix, full or sparse, the find function returns the indices and values of
nonzero elements. Its syntax is

[i,j,s] = find(S)

find returns the row indices of nonzero values in vector i, the column indices in vector
j, and the nonzero values themselves in the vector s. The example below uses find to
locate the indices and values of the nonzeros in a sparse matrix. The sparse function
uses the find output, together with the size of the matrix, to recreate the matrix.

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n)

Indexing in Sparse Matrix Operations

Because sparse matrices are stored in compressed sparse column format, there are
different costs associated with indexing into a sparse matrix than there are with
indexing into a full matrix. Such costs are negligible when you need to change only a few
elements in a sparse matrix, so in those cases it’s normal to use regular array indexing to
reassign values:

B = speye(4);
[i,j,s] = find(B);
[i,j,s]

ans =

     1     1     1
     2     2     1
     3     3     1
     4     4     1
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B(3,1) = 42;
[i,j,s] = find(B);
[i,j,s]

ans =

     1     1     1
     3     1    42
     2     2     1
     3     3     1
     4     4     1

In order to store the new matrix with 42 at (3,1), MATLAB inserts an additional row
into the nonzero values vector and subscript vectors, then shifts all matrix values after
(3,1).

Using linear indexing to access or assign an element in a large sparse matrix will fail if
the linear index exceeds 2^48-1, which is the current upper bound for the number of
elements allowed in a matrix.

S = spalloc(2^30,2^30,2);
S(end) = 1

Maximum variable size allowed by the program is exceeded.

To access an element whose linear index is greater than intmax, use array indexing:

S(2^30,2^30) = 1

S =

         (1073741824,1073741824)              1

While the cost of indexing into a sparse matrix to change a single element is negligible, it
is compounded in the context of a loop and can become quite slow for large matrices. For
that reason, in cases where many sparse matrix elements need to be changed, it is best to
vectorize the operation instead of using a loop. For example, consider a sparse identity
matrix:

n = 10000;
A = 4*speye(n);

Changing the elements of A within a loop takes is slower than a similar vectorized
operation:
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tic; A(1:n-1,n) = -1; A(n,1:n-1) = -1; toc

Elapsed time is 0.003344 seconds.

tic; for k = 1:n-1, C(k,n) = -1; C(n,k) = -1; end, toc

Elapsed time is 0.448069 seconds.

Since MATLAB stores sparse matrices in compressed sparse column format, it needs to
shift multiple entries in A during each pass through the loop.

Preallocating the memory for a sparse matrix and then filling it in an element-wise
manner similarly causes a significant amount of overhead in indexing into the sparse
array:
S1 = spalloc(1000,1000,100000);
tic;
for n = 1:100000
    i = ceil(1000*rand(1,1));
    j = ceil(1000*rand(1,1));
    S1(i,j) = rand(1,1);
end
toc

Elapsed time is 2.577527 seconds.

Constructing the vectors of indices and values eliminates the need to index into the
sparse array, and thus is significantly faster:
i = ceil(1000*rand(100000,1));
j = ceil(1000*rand(100000,1));
v = zeros(size(i));
for n = 1:100000
    v(n) = rand(1,1);
end

tic;
S2 = sparse(i,j,v,1000,1000);
toc

Elapsed time is 0.017676 seconds.

For that reason, it’s best to construct sparse matrices all at once using a construction
function, like the sparse or spdiags functions.

For example, suppose you wanted the sparse form of the coordinate matrix C:
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C =

4 0 0 0 1

0 4 0 0 1

0 0 4 0 1

0

1

0

1

0

1

4

1

1

4

-
-
-
-

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

Construct the five-column matrix directly with the sparse function using the triplet
pairs for the row subscripts, column subscripts, and values:

i = [1 5 2 5 3 5 4 5 1 2 3 4 5]';
j = [1 1 2 2 3 3 4 4 5 5 5 5 5]';
s = [4 1 4 1 4 1 4 1 -1 -1 -1 -1 4]';
C = sparse(i,j,s)

C =

   (1,1)        4
   (5,1)        1
   (2,2)        4
   (5,2)        1
   (3,3)        4
   (5,3)        1
   (4,4)        4
   (5,4)        1
   (1,5)       -1
   (2,5)       -1
   (3,5)       -1
   (4,5)       -1
   (5,5)        4

The ordering of the values in the output reflects the underlying storage by columns. For
more information on how MATLAB stores sparse matrices, see John R. Gilbert, Cleve
Moler, and Robert Schreiber's Sparse Matrices In Matlab: Design and Implementation,
(SIAM Journal on Matrix Analysis and Applications, 13:1, 333–356 (1992)).

Visualizing Sparse Matrices
It is often useful to use a graphical format to view the distribution of the nonzero
elements within a sparse matrix. The MATLAB spy function produces a template view of
the sparsity structure, where each point on the graph represents the location of a
nonzero array element.
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For example:

Load the supplied sparse matrix west0479, one of the Harwell-Boeing collection.

load west0479

View the sparsity structure.
spy(west0479)

See Also
sparse
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More About
• “Computational Advantages of Sparse Matrices” on page 4-2
• “Constructing Sparse Matrices” on page 4-4
• “Sparse Matrix Operations” on page 4-18

 See Also

4-17



Sparse Matrix Operations
In this section...
“Efficiency of Operations” on page 4-18
“Permutations and Reordering” on page 4-19
“Factoring Sparse Matrices” on page 4-22
“Systems of Linear Equations” on page 4-32
“Eigenvalues and Singular Values” on page 4-34
“References” on page 4-37

Efficiency of Operations
• “Computational Complexity” on page 4-18
• “Algorithmic Details” on page 4-18

Computational Complexity

The computational complexity of sparse operations is proportional to nnz, the number of
nonzero elements in the matrix. Computational complexity also depends linearly on the
row size m and column size n of the matrix, but is independent of the product m*n, the
total number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solution of sparse linear
equations, involves factors like ordering and fill-in, which are discussed in the previous
section. In general, however, the computer time required for a sparse matrix operation is
proportional to the number of arithmetic operations on nonzero quantities.

Algorithmic Details

Sparse matrices propagate through computations according to these rules:

• Functions that accept a matrix and return a scalar or constant-size vector always
produce output in full storage format. For example, the size function always returns
a full vector, whether its input is full or sparse.

• Functions that accept scalars or vectors and return matrices, such as zeros, ones,
rand, and eye, always return full results. This is necessary to avoid introducing
sparsity unexpectedly. The sparse analog of zeros(m,n) is simply sparse(m,n).
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The sparse analogs of rand and eye are sprand and speye, respectively. There is no
sparse analog for the function ones.

• Unary functions that accept a matrix and return a matrix or vector preserve the
storage class of the operand. If S is a sparse matrix, then chol(S) is also a sparse
matrix, and diag(S) is a sparse vector. Columnwise functions such as max and sum
also return sparse vectors, even though these vectors can be entirely nonzero.
Important exceptions to this rule are the sparse and full functions.

• Binary operators yield sparse results if both operands are sparse, and full results if
both are full. For mixed operands, the result is full unless the operation preserves
sparsity. If S is sparse and F is full, then S+F, S*F, and F\S are full, while S.*F and
S&F are sparse. In some cases, the result might be sparse even though the matrix has
few zero elements.

• Matrix concatenation using either the cat function or square brackets produces
sparse results for mixed operands.

Permutations and Reordering
• “Reordering for Sparsity” on page 4-21
• “Reordering to Reduce Bandwidth” on page 4-21
• “Approximate Minimum Degree Ordering” on page 4-21
• “Nested Dissection Ordering” on page 4-22

A permutation of the rows and columns of a sparse matrix S can be represented in two
ways:

• A permutation matrix P acts on the rows of S as P*S or on the columns as S*P'.
• A permutation vector p, which is a full vector containing a permutation of 1:n, acts

on the rows of S as S(p,:), or on the columns as S(:,p).

For example, the statements

p = [1 3 4 2 5]
I = eye(5,5);
P = I(p,:);
e = ones(4,1);
S = diag(11:11:55) + diag(e,1) + diag(e,-1)

produce:
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p =

     1     3     4     2     5

P =

     1     0     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     1     0     0     0
     0     0     0     0     1

S =

    11     1     0     0     0
     1    22     1     0     0
     0     1    33     1     0
     0     0     1    44     1
     0     0     0     1    55

You can now try some permutations using the permutation vector p and the permutation
matrix P. For example, the statements S(p,:) and P*S produce

ans =

    11     1     0     0     0
     0     1    33     1     0
     0     0     1    44     1
     1    22     1     0     0
     0     0     0     1    55

Similarly, S(:,p) and S*P' produce

ans =

    11     0     0     1     0
     1     1     0    22     0
     0    33     1     1     0
     0     1    44     0     1
     0     0     1     0    55

If P is a sparse matrix, then both representations use storage proportional to n and you
can apply either to S in time proportional to nnz(S). The vector representation is
slightly more compact and efficient, so the various sparse matrix permutation routines
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all return full row vectors with the exception of the pivoting permutation in LU
(triangular) factorization, which returns a matrix compatible with the full LU
factorization.

To convert between the two representations, let I = speye(n) be an identity matrix of
the appropriate size. Then,
P = I(p,:)
P' = I(:,p)
p = (1:n)*P'
p = (P*(1:n)')'

The inverse of P is simply R = P'. You can compute the inverse of p with r(p) = 1:n.

r(p) = 1:5

r =

     1     4     2     3     5

Reordering for Sparsity

Reordering the columns of a matrix can often make its LU or QR factors sparser.
Reordering the rows and columns can often make its Cholesky factors sparser. The
simplest such reordering is to sort the columns by nonzero count. This is sometimes a
good reordering for matrices with very irregular structures, especially if there is great
variation in the nonzero counts of rows or columns.

The colperm computes a permutation that orders the columns of a matrix by the
number of nonzeros in each column from smallest to largest.

Reordering to Reduce Bandwidth

The reverse Cuthill-McKee ordering is intended to reduce the profile or bandwidth of the
matrix. It is not guaranteed to find the smallest possible bandwidth, but it usually does.
The symrcm function actually operates on the nonzero structure of the symmetric matrix
A + A', but the result is also useful for nonsymmetric matrices. This ordering is useful
for matrices that come from one-dimensional problems or problems that are in some
sense long and thin.

Approximate Minimum Degree Ordering

The degree of a node in a graph is the number of connections to that node. This is the
same as the number of off-diagonal nonzero elements in the corresponding row of the
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adjacency matrix. The approximate minimum degree algorithm generates an ordering
based on how these degrees are altered during Gaussian elimination or Cholesky
factorization. It is a complicated and powerful algorithm that usually leads to sparser
factors than most other orderings, including column count and reverse Cuthill-McKee.
Because keeping track of the degree of each node is very time-consuming, the
approximate minimum degree algorithm uses an approximation to the degree, rather
than the exact degree.

These MATLAB functions implement the approximate minimum degree algorithm:

• symamd — Use with symmetric matrices.
• colamd — Use with nonsymmetric matrices and symmetric matrices of the form

A*A' or A'*A.

See “Reordering and Factorization” on page 4-24 for an example using symamd.

You can change various parameters associated with details of the algorithms using the
spparms function.

For details on the algorithms used by colamd and symamd, see [5]. The approximate
degree the algorithms use is based on [1].

Nested Dissection Ordering

Like the approximate minimum degree ordering, the nested dissection ordering
algorithm implemented by the dissect function reorders the matrix rows and columns
by considering the matrix to be the adjacency matrix of a graph. The algorithm reduces
the problem down to a much smaller scale by collapsing together pairs of vertices in the
graph. After reordering the small graph, the algorithm then applies projection and
refinement steps to expand the graph back to the original size.

The nested dissection algorithm produces high quality reorderings and performs
particularly well with finite element matrices compared to other reordering techniques.
For more information about the nested dissection ordering algorithm, see [7].

Factoring Sparse Matrices

• “LU Factorization” on page 4-23
• “Cholesky Factorization” on page 4-27
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• “QR Factorization” on page 4-28
• “Incomplete Factorizations” on page 4-29

LU Factorization

If S is a sparse matrix, the following command returns three sparse matrices L, U, and P
such that P*S = L*U.

[L,U,P] = lu(S)

lu obtains the factors by Gaussian elimination with partial pivoting. The permutation
matrix P has only n nonzero elements. As with dense matrices, the statement [L,U] =
lu(S) returns a permuted unit lower triangular matrix and an upper triangular matrix
whose product is S. By itself, lu(S) returns L and U in a single matrix without the pivot
information.

The three-output syntax

[L,U,P] = lu(S)

selects P via numerical partial pivoting, but does not pivot to improve sparsity in the LU
factors. On the other hand, the four-output syntax

[L,U,P,Q]=lu(S) 

selects P via threshold partial pivoting, and selects P and Q to improve sparsity in the LU
factors.

You can control pivoting in sparse matrices using

lu(S,thresh)

where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal entry in a
column has magnitude less than thresh times the magnitude of any sub-diagonal entry
in that column. thresh = 0 forces diagonal pivoting. thresh = 1 is the default. (The
default for thresh is 0.1 for the four-output syntax).

When you call lu with three or less outputs, MATLAB automatically allocates the
memory necessary to hold the sparse L and U factors during the factorization. Except for
the four-output syntax, MATLAB does not use any symbolic LU prefactorization to
determine the memory requirements and set up the data structures in advance.
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Reordering and Factorization

This example shows the effects of reordering and factorization on sparse matrices.

If you obtain a good column permutation p that reduces fill-in, perhaps from symrcm or
colamd, then computing lu(S(:,p)) takes less time and storage than computing
lu(S).

Create a sparse matrix using the Bucky ball example.

B = bucky;

B has exactly three nonzero elements in each row and column.

Create two permutations, r and m using symrcm and symamd respectively.

r = symrcm(B);
m = symamd(B);

The two permutations are the symmetric reverse Cuthill-McKee ordering and the
symmetric approximate minimum degree ordering.

Create spy plots to show the three adjacency matrices of the Bucky Ball graph with these
three different numberings. The local, pentagon-based structure of the original
numbering is not evident in the others.

figure
subplot(1,3,1)
spy(B)
title('Original')

subplot(1,3,2)
spy(B(r,r))
title('Reverse Cuthill-McKee')

subplot(1,3,3)
spy(B(m,m))
title('Min Degree')
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The reverse Cuthill-McKee ordering, r, reduces the bandwidth and concentrates all the
nonzero elements near the diagonal. The approximate minimum degree ordering, m,
produces a fractal-like structure with large blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use speye, the
sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(size(B));

Since each row sum is now zero, this new B is actually singular, but it is still instructive
to compute its LU factorization. When called with only one output argument, lu returns
the two triangular factors, L and U, in a single sparse matrix. The number of nonzeros in
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that matrix is a measure of the time and storage required to solve linear systems
involving B.

Here are the nonzero counts for the three permutations being considered.

• lu(B) (Original): 1022
• lu(B(r,r)) (Reverse Cuthill-McKee): 968
• lu(B(m,m)) (Approximate minimum degree): 636

Even though this is a small example, the results are typical. The original numbering
scheme leads to the most fill-in. The fill-in for the reverse Cuthill-McKee ordering is
concentrated within the band, but it is almost as extensive as the first two orderings. For
the approximate minimum degree ordering, the relatively large blocks of zeros are
preserved during the elimination and the amount of fill-in is significantly less than that
generated by the other orderings.

The spy plots below reflect the characteristics of each reordering.

figure
subplot(1,3,1)
spy(lu(B))
title('Original')

subplot(1,3,2)
spy(lu(B(r,r)))
title('Reverse Cuthill-McKee')

subplot(1,3,3)
spy(lu(B(m,m)))
title('Min Degree')
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Cholesky Factorization

If S is a symmetric (or Hermitian), positive definite, sparse matrix, the statement below
returns a sparse, upper triangular matrix R so that R'*R = S.

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute approximate
minimum degree and profile limiting permutations for use with chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not require
pivoting for numerical stability, chol does a quick calculation of the amount of memory
required and allocates all the memory at the start of the factorization. You can use
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symbfact, which uses the same algorithm as chol, to calculate how much memory is
allocated.

QR Factorization

MATLAB computes the complete QR factorization of a sparse matrix S with

 [Q,R] = qr(S)

or

[Q,R,E] = qr(S)

but this is often impractical. The unitary matrix Q often fails to have a high proportion of
zero elements. A more practical alternative, sometimes known as “the Q-less QR
factorization,” is available.

With one sparse input argument and one output argument

R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix R provides a
Cholesky factorization for the matrix associated with the normal equations:

R'*R = S'*S

However, the loss of numerical information inherent in the computation of S'*S is
avoided.

With two input arguments having the same number of rows, and two output arguments,
the statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q'*B without computing Q.

The Q-less QR factorization allows the solution of sparse least squares problems
minimize Ax b-

2

with two steps

[c,R] = qr(A,b)
x = R\c
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If A is sparse, but not square, MATLAB uses these steps for the linear equation solving
backslash operator:

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with different right-
hand sides, b, that are not necessarily known when R = qr(A) is computed. The
approach solves the “semi-normal equations”

R'*R*x = A'*b

with

x = R\(R'\(A'*b))

and then employs one step of iterative refinement to reduce round off error:

r = b - A*x
e = R\(R'\(A'*r))
x = x + e

Incomplete Factorizations

The ilu and ichol functions provide approximate, incomplete factorizations, which are
useful as preconditioners for sparse iterative methods.

The ilu function produces three incomplete lower-upper (ILU) factorizations: the zero-
fill ILU (ILU(0)), a Crout version of ILU (ILUC(tau)), and ILU with threshold dropping
and pivoting (ILUTP(tau)). The ILU(0) never pivots and the resulting factors only have
nonzeros in positions where the input matrix had nonzeros. Both ILUC(tau) and
ILUTP(tau), however, do threshold-based dropping with the user-defined drop tolerance
tau.

For example:

A = gallery('neumann', 1600) + speye(1600);
nnz(A)
ans =
        7840

nnz(lu(A))
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ans =
      126478

shows that A has 7840 nonzeros, and its complete LU factorization has 126478 nonzeros.
On the other hand, the following code shows the different ILU outputs:

[L,U] = ilu(A);
nnz(L)+nnz(U)-size(A,1);
ans =
        7840

norm(A-(L*U).*spones(A),'fro')./norm(A,'fro')
ans =
  4.8874e-017

opts.type = 'ilutp';
opts.droptol = 1e-4;
[L,U,P] = ilu(A, opts);
nnz(L)+nnz(U)-size(A,1)
ans =
       31147

norm(P*A - L*U,'fro')./norm(A,'fro')
ans =
  9.9224e-005

opts.type = 'crout';
nnz(L)+nnz(U)-size(A,1)
ans =
       31083
norm(P*A-L*U,'fro')./norm(A,'fro')
ans =
  9.7344e-005

These calculations show that the zero-fill factors have 7840 nonzeros, the ILUTP(1e-4)
factors have 31147 nonzeros, and the ILUC(1e-4) factors have 31083 nonzeros. Also,
the relative error of the product of the zero-fill factors is essentially zero on the pattern of
A. Finally, the relative error in the factorizations produced with threshold dropping is on
the same order of the drop tolerance, although this is not guaranteed to occur. See the
ilu reference page for more options and details.

The ichol function provides zero-fill incomplete Cholesky factorizations (IC(0)) as well
as threshold-based dropping incomplete Cholesky factorizations (ICT(tau)) of
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symmetric, positive definite sparse matrices. These factorizations are the analogs of the
incomplete LU factorizations above and have many of the same characteristics. For
example:

A = delsq(numgrid('S',200));
nnz(A)
ans =
      195228

nnz(chol(A,'lower'))
ans =
     7762589

shows that A has 195228 nonzeros, and its complete Cholesky factorization without
reordering has 7762589 nonzeros. By contrast:

L = ichol(A);
nnz(L)
ans =
      117216
norm(A-(L*L').*spones(A),'fro')./norm(A,'fro')
ans =
  3.5805e-017

opts.type = 'ict';
opts.droptol = 1e-4;
L = ichol(A,opts);
nnz(L)
ans =
     1166754

norm(A-L*L','fro')./norm(A,'fro')
ans =
  2.3997e-004

IC(0) has nonzeros only in the pattern of the lower triangle of A, and on the pattern of A,
the product of the factors matches. Also, the ICT(1e-4) factors are considerably sparser
than the complete Cholesky factor, and the relative error between A and L*L' is on the
same order of the drop tolerance. It is important to note that unlike the factors provided
by chol, the default factors provided by ichol are lower triangular. See the ichol
reference page for more information.
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Systems of Linear Equations

There are two different classes of methods for solving systems of simultaneous linear
equations:

• Direct methods are usually variants of Gaussian elimination. These methods involve
the individual matrix elements directly, through matrix operations such as LU or
Cholesky factorization. MATLAB implements direct methods through the matrix
division operators / and \, which you can use to solve linear systems.

• Iterative methods produce only an approximate solution after a finite number of steps.
These methods involve the coefficient matrix only indirectly, through a matrix-vector
product or an abstract linear operator. Iterative methods are usually applied only to
sparse matrices.

Direct Methods

Direct methods are usually faster and more generally applicable than indirect methods,
if there is enough storage available to carry them out. Iterative methods are usually
applicable to restricted cases of equations and depend on properties like diagonal
dominance or the existence of an underlying differential operator. Direct methods are
implemented in the core of the MATLAB software and are made as efficient as possible
for general classes of matrices. Iterative methods are usually implemented in MATLAB-
language files and can use the direct solution of subproblems or preconditioners.

Using a Different Preordering

If A is not diagonal, banded, triangular, or a permutation of a triangular matrix,
backslash (\) reorders the indices of A to reduce the amount of fill-in—that is, the
number of nonzero entries that are added to the sparse factorization matrices. The new
ordering, called a preordering, is performed before the factorization of A. In some cases,
you might be able to provide a better preordering than the one used by the backslash
algorithm.

To use a different preordering, first turn off both of the automatic preorderings that
backslash might perform by default, using the function spparms as follows:

currentParms = spparms;
spparms('autoamd',0);
spparms('autommd',0);
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Now, assuming you have created a permutation vector p that specifies a preordering of
the indices of A, apply backslash to the matrix A(:,p), whose columns are the columns
of A, permuted according to the vector p.

x = A (:,p) \ b;
x(p) = x;
spparms(currentParms);

The command spparms(defaultParms) restores the controls to their prior state, in
case you use A\b later without specifying an appropriate preordering.

Iterative Methods

Eleven functions are available that implement iterative methods for sparse systems of
simultaneous linear systems.
Functions for Iterative Methods for Sparse Systems

Function Method
bicg Biconjugate gradient
bicgstab Biconjugate gradient stabilized
bicgstabl Biconjugate gradient stabilized (l)
cgs Conjugate gradient squared
gmres Generalized minimum residual
lsqr Least squares
minres Minimum residual
pcg Preconditioned conjugate gradient
qmr Quasiminimal residual
symmlq Symmetric LQ
tfqmr Transpose-free quasiminimal residual

These methods are designed to solve Ax = b or minimize the norm of b – Ax. For the
Preconditioned Conjugate Gradient method, pcg, A must be a symmetric, positive
definite matrix. minres and symmlq can be used on symmetric indefinite matrices. For
lsqr, the matrix need not be square. The other seven can handle nonsymmetric, square
matrices and each method has a distinct benefit.

All eleven methods can make use of preconditioners. The linear system
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Ax b=

is replaced by the equivalent system
M Ax M b

- -

=
1 1

The preconditioner M is chosen to accelerate convergence of the iterative method. In
many cases, the preconditioners occur naturally in the mathematical model. A partial
differential equation with variable coefficients can be approximated by one with constant
coefficients, for example. Incomplete matrix factorizations can be used in the absence of
natural preconditioners.

The five-point finite difference approximation to Laplace's equation on a square, two-
dimensional domain provides an example. The following statements use the
preconditioned conjugate gradient method preconditioner M = L*L', where L is the zero-
fill incomplete Cholesky factor of A.

A = delsq(numgrid('S',50));
b = ones(size(A,1),1);
tol = 1e-3;
maxit = 100;
L = ichol(A);
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,L,L');

Twenty-one iterations are required to achieve the prescribed accuracy. On the other
hand, using a different preconditioner may yield better results. For example, using
ichol to construct a modified incomplete Cholesky, the prescribed accuracy is met after
only 15 iterations:

L = ichol(A,struct('type','nofill','michol','on'));
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,L,L');

Background information on these iterative methods and incomplete factorizations is
available in [2] and [6].

Eigenvalues and Singular Values

Two functions are available that compute a few specified eigenvalues or singular values.
svds is based on eigs.
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Functions to Compute a Few Eigenvalues or Singular Values

Function Description
eigs Few eigenvalues
svds Few singular values

These functions are most frequently used with sparse matrices, but they can be used
with full matrices or even with linear operators defined in MATLAB code.

The statement

[V,lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A that are nearest
the “shift” sigma. If sigma is omitted, the eigenvalues largest in magnitude are found. If
sigma is zero, the eigenvalues smallest in magnitude are found. A second matrix, B, can
be included for the generalized eigenvalue problem: Aυ = λBυ.

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k,'smallest')

finds the k smallest singular values.

This example shows how to find the smallest eigenvalue and eigenvector of a sparse
matrix.

Set up the five-point Laplacian difference operator on a 65-by-65 grid in an L-shaped,
two-dimensional domain.

L = numgrid('L',65);
A = delsq(L);

Determine the order and number of nonzero elements.

size(A)

ans = 
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        2945        2945

nnz(A)

ans = 14473

A is a matrix of order 2945 with 14,473 nonzero elements.

Compute the smallest eigenvalue and eigenvector.

[v,d] = eigs(A,1,0);

Distribute the components of the eigenvector over the appropriate grid points and
produce a contour plot of the result.

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;
contour(x,x,L,15)
axis square
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The numerical techniques used in eigs and svds are described in [6].
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Directed and Undirected Graphs
In this section...
“What Is a Graph?” on page 5-2
“Creating Graphs” on page 5-4
“Graph Node IDs” on page 5-9
“Modify an Existing Graph” on page 5-10

What Is a Graph?

A graph is a collection of nodes and edges that represents relationships:

• Nodes are vertices that correspond to objects.
• Edges are the connections between objects.
• The graph edges sometimes have Weights, which indicate the strength (or some

other attribute) of each connection between the nodes.

These definitions are general, as the exact meaning of the nodes and edges in a graph
depends on the specific application. For instance, you can model the friendships in a
social network using a graph. The graph nodes are people, and the edges represent
friendships. The natural correspondence of graphs to physical objects and situations
means that you can use graphs to model a wide variety of systems. For example:

• The Internet — The graph nodes are computers, and the edges are network
connections between computers.

• A brain — The graph nodes are neurons, and the edges represent neuron connections.
• Web page linking — The graph nodes are web pages, and the edges represent links

between pages.
• Airports — The graph nodes are airports, and the edges represent flights between

airports.

In MATLAB, the graph and digraph functions construct objects that represent
undirected and directed graphs.

• Undirected graphs have edges that do not have a direction. The edges indicate a
two-way relationship, in that each edge can be traversed in both directions. The figure
below shows a simple undirected graph with three nodes and three edges.
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• Directed graphs have edges with direction. The edges indicate a one-way
relationship, in that each edge can only be traversed in a single direction. The figure
below shows a simple directed graph with three nodes and two edges.
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The exact position, length, or orientation of the edges in a graph illustration typically do
not have meaning. In other words, the same graph can be visualized in several different
ways by rearranging the nodes and/or distorting the edges, as long as the underlying
structure does not change.

Graphs created using graph and digraph can have self-loops (an edge connecting a node
to itself). However, graphs cannot have multiple edges with the same source and target
nodes.

Creating Graphs

The primary ways to create a graph are to use an adjacency matrix or an edge list.
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Adjacency Matrix

One way to represent the information in a graph is with a square adjacency matrix. The
nonzero entries in an adjacency matrix indicate an edge between two nodes, and the
value of the entry indicates the weight of the edge. The diagonal elements of an
adjacency matrix are typically zero, but a nonzero diagonal element indicates a self-loop,
or a node that is connected to itself by an edge.

• The adjacency matrix for undirected graphs created by graph must be symmetric.
Although, in practice the matrices are frequently triangular to avoid repetition. Use
graph(A,'upper') or graph(A,'lower') to construct an undirected graph using
only the upper or lower triangle of the adjacency matrix.

• The adjacency matrix for a directed graph created by digraph does not need to be
symmetric.

• For large graphs, the adjacency matrix contains many zeros and is typically a sparse
matrix.

For example, consider this undirected graph.
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You can represent the graph with this adjacency matrix.
0 1 2

1 0 3

2 3 0

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

.

To construct the graph in MATLAB, input:

A = [0 1 2; 1 0 3; 2 3 0];
node_names = {'A','B','C'};
G = graph(A,node_names)
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You can use adjacency matrices to create a graph using the graph or digraph functions,
or you can use the adjacency function to find the unweighted sparse adjacency matrix
of a pre-existing graph.

Edge List

Another way to represent the information in a graph is by listing all of the edges. For
connected graphs, the graph nodes are implied by the list of the graph edges. However,
some graphs have disconnected nodes that need to be listed separately.

For example, consider the same undirected graph.

Now represent the graph by the edge list
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Edge     Weight

( , )

( , )

( , )

A B

A C

B C

1

2

3

From the edge list it is easy to conclude that the graph has three unique nodes, A, B, and
C, which are connected by the three listed edges.

In MATLAB, the list of edges is separated by column into source nodes and target nodes.
For directed graphs the edge direction (from source to target) is important, but for
undirected graphs the source and target node are interchangeable. One way to construct
this graph using the edge list is to use separate inputs for the source nodes, target nodes,
and edge weights:

source_nodes = {'A','A','B'};
target_nodes = {'B','C','C'};
edge_weights = [1 2 3];
G = graph(source_nodes, target_nodes, edge_weights)

Another way to construct a graph from the edge list is by creating a table with the
appropriate variables. When using this method, the first variable in the table must be a
two column matrix or cell array of character vectors named EndNodes. To construct this
graph using a table, input:

EdgeTable = table({'A' 'B'; 'A' 'C'; 'B' 'C'},[1 2 3]', ...
    'VariableNames',{'EndNodes','Weight'});
G = graph(EdgeTable)

Both graph and digraph permit construction of a graph from the edge list. After
constructing a graph, G, you can look at the edges (and any properties they might have)
with G.Edges. The order of the edges in G.Edges is sorted by source node (first column)
and secondarily by target node (second column).

Since the underlying implementation of graph and digraph depends on sparse
matrices, many of the same indexing costs apply. Ultimately, it is quickest to construct a
graph all at once from the triplet pairs (source,target,weight) using one of the
aforementioned methods, instead of creating an empty graph and iteratively adding more
nodes and edges. Performance is best when you minimize the number of calls to graph,
digraph, addedge, addnode, rmedge, and rmnode.
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Graph Node IDs

By default, all of the nodes in a graph created using graph or digraph are numbered.
Thus, it’s always an option to refer to the nodes in a graph by their numeric node index.

If the graph has node names (that is, G.Nodes contains a variable Name), then you also
can refer to the nodes in a graph using their names. Thus, named nodes in a graph can
be referred to by either their node indices or node names. For example, node 1 can be
called, 'A'.

The term node ID encompasses both aspects of node identification. The node ID of a node
refers to both the node index and the node name.

For convenience, MATLAB remembers which type of node ID you use in calling most
graph functions. So if you refer to the nodes in a graph by their node indices, most graph
functions return a numeric answer that also refers to the nodes by their indices.

A = [0 1 1 0; 1 0 1 0; 1 1 0 1; 0 0 1 0];
G = graph(A,{'a','b','c','d'});
p = shortestpath(G,1,4)

p =

     1     3     4

However, if you refer to the nodes by their names, then most graph functions return an
answer that also refers to the nodes by their names (contained in a cell array of character
vectors).

p1 = shortestpath(G,'a','d')

p1 = 

    'a'    'c'    'd'

Use findnode to find the numeric node ID for a given node name. Conversely, for a
given numeric node ID, index into G.Nodes.Name to determine the corresponding node
name.
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Modify an Existing Graph

After you construct a graph or digraph object, you can use a variety of functions to
modify the graph structure. The table lists the available graph manipulation functions,
which modify the nodes and edges of either graph or digraph objects.
addedge Add one or more edges to a graph
rmedge Remove one or more edges from a graph
addnode Add one or more nodes to a graph
rmnode Remove one or more nodes from a graph
findnode Locate a specific node in a graph
findedge Locate a specific edge in a graph
numedges Find the number of edges in a graph
numnodes Find the number of nodes in a graph
reordernodes Permute the order of the nodes in a graph
subgraph Extract subgraph

See “Modify Nodes and Edges of Existing Graph” on page 5-11 for some common graph
modification examples.

See Also
digraph | graph

More About
• “Modify Nodes and Edges of Existing Graph” on page 5-11
• “Add Graph Node Names, Edge Weights, and Other Attributes” on page 5-15
• “Graph Plotting and Customization” on page 5-20
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Modify Nodes and Edges of Existing Graph
This example shows how to access and modify the nodes and/or edges in a graph or
digraph object using the addedge, rmedge, addnode, rmnode, findedge, findnode,
and subgraph functions.

Add Nodes

Create a graph with four nodes and four edges. The corresponding elements in s and t
specify the end nodes of each graph edge.

s = [1 1 1 2];
t = [2 3 4 3];
G = graph(s,t)

G = 
  graph with properties:

    Edges: [4x1 table]
    Nodes: [4x0 table]

View the edge list of the graph.

G.Edges

ans=4x1 table
    EndNodes
    ________

    1    2  
    1    3  
    1    4  
    2    3  

Use addnode to add five nodes to the graph. This command adds five disconnected nodes
with node IDs 5, 6, 7, 8, and 9.

G = addnode(G,5)

G = 
  graph with properties:
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    Edges: [4x1 table]
    Nodes: [9x0 table]

Remove Nodes

Use rmnode to remove nodes 3, 5, and 6 from the graph. All edges connected to one of the
removed nodes also are removed. The remaining six nodes in the graph are renumbered
to reflect the new number of nodes.

G = rmnode(G,[3 5 6])

G = 
  graph with properties:

    Edges: [2x1 table]
    Nodes: [6x0 table]

Add Edges

Use addedge to add two edges to G. The first edge is between node 1 and node 5, and the
second edge is between node 2 and node 5. This command adds two new rows to
G.Edges.

G = addedge(G,[1 2],[5 5])

G = 
  graph with properties:

    Edges: [4x1 table]
    Nodes: [6x0 table]

Remove Edges

Use rmedge to remove the edge between node 1 and node 3. This command removes a
row from G.Edges.

G = rmedge(G,1,3)

G = 
  graph with properties:

    Edges: [3x1 table]
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    Nodes: [6x0 table]

Determine Edge Index

Determine the edge index for the edge between nodes 1 and 5. The edge index, ei, is a
row number in G.Edges.

ei = findedge(G,1,5)

ei = 2

Determine Node Index

Add node names to the graph, and then determine the node index for node 'd'. The
numeric node index, ni, is a row number in G.Nodes. You can use both ni and the node
name, 'd', to refer to the node when using other graph functions, like shortestpath.

G.Nodes.Name = {'a' 'b' 'c' 'd' 'e' 'f'}';
ni = findnode(G,'d')

ni = 4

Extract Subgraph

Use subgraph to extract a piece of the graph containing only two nodes.

H = subgraph(G,[1 2])

H = 
  graph with properties:

    Edges: [1x1 table]
    Nodes: [2x1 table]

View the edge list of the subgraph.

H.Edges

ans=1x1 table
     EndNodes 
    __________

    'a'    'b'
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Modify Node and Edge Tables with Variables Editor

The node and edge information for a graph object is contained in two properties: Nodes
and Edges. Both of these properties are tables containing variables to describe the
attributes of the nodes and edges in the graph. Since Nodes and Edges are both tables,
you can use the Variables editor to interactively view or edit the tables. You cannot add
or remove nodes or edges using the Variables editor, and you also cannot edit the
EndNodes property of the Edges table. The Variables editor is useful for managing extra
node and edge attributes in the Nodes and Edges tables. For more information, see
“Create and Edit Variables”.

See Also
addedge | addnode | digraph | findedge | findnode | graph | rmedge | rmnode
| subgraph

More About
• “Directed and Undirected Graphs” on page 5-2
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Add Graph Node Names, Edge Weights, and Other Attributes
This example shows how to add attributes to the nodes and edges in graphs created
using graph and digraph. You can specify node names or edge weights when you
originally call graph or digraph to create a graph. However, this example shows how to
add attributes to a graph after it has been created.

Create Graph

Create a directed graph. The corresponding elements in s and t define the source and
target nodes of each edge in the graph.

s = [1 1 2 2 3];
t = [2 4 3 4 4];
G = digraph(s,t)

G = 
  digraph with properties:

    Edges: [5x1 table]
    Nodes: [4x0 table]

Add Node Names

Add node names to the graph by adding the variable, Name, to the G.Nodes table. The
Name variable must be an N-by-1 cell array of character vectors, where N =
numnodes(G). It is important to use the Name variable when adding node names, as this
variable name is treated specially by some graph functions.

G.Nodes.Name = {'First' 'Second' 'Third' 'Fourth'}';

View the new Nodes table.

G.Nodes

ans=4x1 table
      Name  
    ________

    'First' 
    'Second'
    'Third' 
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    'Fourth'

Use table indexing to view the names of nodes 1 and 4.

G.Nodes.Name([1 4])

ans = 2x1 cell array
    {'First' }
    {'Fourth'}

Add Edge Weights

Add edge weights to the graph by adding the variable, Weight, to the G.Edges table.
The Weight variable must be an M-by-1 numeric vector, where M = numedges(G). It is
important to use the Weight variable when adding edge weights, as this variable name
is treated specially by some graph functions.

G.Edges.Weight = [10 20 30 40 50]';

View the new Edges table.

G.Edges

ans=5x2 table
          EndNodes          Weight
    ____________________    ______

    'First'     'Second'    10    
    'First'     'Fourth'    20    
    'Second'    'Third'     30    
    'Second'    'Fourth'    40    
    'Third'     'Fourth'    50    

Use table indexing to view the first and third rows of G.Edges.

G.Edges([1 3],:)

ans=2x2 table
          EndNodes          Weight
    ____________________    ______

    'First'     'Second'    10    
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    'Second'    'Third'     30    

Add Custom Attributes

In principle you can add any variable to G.Nodes and G.Edges that defines an attribute
of the graph nodes or edges. Adding custom attributes can be useful, since functions like
subgraph and reordernodes preserve the graph attributes.

For example, add a variable named Power to G.Edges to indicate whether each edge is
'on' or 'off'.

G.Edges.Power = {'on' 'on' 'on' 'off' 'off'}';
G.Edges

ans=5x3 table
          EndNodes          Weight    Power
    ____________________    ______    _____

    'First'     'Second'    10        'on' 
    'First'     'Fourth'    20        'on' 
    'Second'    'Third'     30        'on' 
    'Second'    'Fourth'    40        'off'
    'Third'     'Fourth'    50        'off'

Add a variable named Size to G.Nodes to indicate the physical size of each node.

G.Nodes.Size = [10 20 10 30]';
G.Nodes

ans=4x2 table
      Name      Size
    ________    ____

    'First'     10  
    'Second'    20  
    'Third'     10  
    'Fourth'    30  

Modify Tables with Variables Editor

Since Nodes and Edges are both tables, you can use the Variables editor to interactively
view or edit the tables. For more information, see “Create and Edit Variables”.
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Label Nodes and Edges of Graph Plot

When you plot a graph, you can use the variables in G.Nodes and G.Edges to label the
graph nodes and edges. This practice is convenient, since these variables are already
guaranteed to have the correct number of elements.

Plot the graph and label the edges using the Power variable in G.Edges. Label the nodes
using the Size variable in G.Nodes.

p = plot(G,'EdgeLabel',G.Edges.Power,'NodeLabel',G.Nodes.Size)

p = 
  GraphPlot with properties:

     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {'10'  '20'  '10'  '30'}
     EdgeLabel: {'on'  'on'  'on'  'off'  'off'}
         XData: [2 1.5000 1 2]
         YData: [4 3 2 1]
         ZData: [0 0 0 0]

  Show all properties
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See Also
digraph | graph

More About
• “Directed and Undirected Graphs” on page 5-2
• “Modify Nodes and Edges of Existing Graph” on page 5-11

 See Also
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Graph Plotting and Customization
This example shows how to plot graphs, and then customize the display to add labels or
highlighting to the graph nodes and edges.

Graph Plotting Objects

Use the plot function to plot graph and digraph objects. By default, plot examines
the size and type of graph to determine which layout to use and adds node labels to
graphs that have 100 or fewer nodes. The node labels use the node names if available;
otherwise, the labels are numeric node indices.

For example, create a graph using the buckyball adjacency matrix, and then plot the
graph using all of the default options. If you call plot and specify an output argument,
then the function returns a handle to a GraphPlot object. Subsequently, you can use
this object to adjust properties of the plot. For example, you can change the color or style
of the edges, the size and color of the nodes, and so on.

G = graph(bucky);
p = plot(G)

p = 
  GraphPlot with properties:

     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {1x60 cell}
     EdgeLabel: {}
         XData: [1x60 double]
         YData: [1x60 double]
         ZData: [1x60 double]

  Show all properties
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After you have a handle to the GraphPlot object, use dot indexing to access or change
the property values. For a complete list of the properties that you can adjust, see
GraphPlot Properties.

Change the value of NodeColor to 'red'.

p.NodeColor = 'red';
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Determine the line width of the edges.
p.LineWidth
ans = 0.5000

Create and Plot Graph

Create and plot a graph representing an L-shaped membrane constructed from a square
grid with a side of 12 nodes. Specify an output argument with plot to return a handle to
the GraphPlot object.
n = 12;
A = delsq(numgrid('L',n));
G = graph(A,'OmitSelfLoops')
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G = 
  graph with properties:

    Edges: [130x2 table]
    Nodes: [75x0 table]

p = plot(G)

p = 
  GraphPlot with properties:

     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {1x75 cell}
     EdgeLabel: {}
         XData: [1x75 double]
         YData: [1x75 double]
         ZData: [1x75 double]

  Show all properties
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Change Graph Node Layout

Use the layout function to change the layout of the graph nodes in the plot. The
different layout options automatically compute node coordinates for the plot.
Alternatively, you can specify your own node coordinates with the XData, YData, and
ZData properties of the GraphPlot object.

Instead of using the default 2-D layout method, use layout to specify the 'force3'
layout, which is a 3-D force directed layout.

layout(p,'force3')
view(3)
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Proportional Node Coloring

Color the graph nodes based on their degree. In this graph, all of the interior nodes have
the same maximum degree of 4, nodes along the boundary of the graph have a degree of
3, and the corner nodes have the smallest degree of 2. Store this node coloring data as the
variable NodeColors in G.Nodes.

G.Nodes.NodeColors = degree(G);
p.NodeCData = G.Nodes.NodeColors;
colorbar
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Edge Line Width by Weight

Add some random integer weights to the graph edges, and then plot the edges such that
their line width is proportional to their weight. Since an edge line width approximately
greater than 7 starts to become cumbersome, scale the line widths such that the edge
with the greatest weight has a line width of 7. Store this edge width data as the variable
LWidths in G.Edges.

G.Edges.Weight = randi([10 250],130,1);
G.Edges.LWidths = 7*G.Edges.Weight/max(G.Edges.Weight);
p.LineWidth = G.Edges.LWidths;
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Extract Subgraph

Extract and plot the top right corner of G as a subgraph, to make it easier to read the
details on the graph. The new graph, H, inherits the NodeColors and LWidths variables
from G, so that recreating the previous plot customizations is straightforward. However,
the nodes in H are renumbered to account for the new number of nodes in the graph.

H = subgraph(G,[1:31 36:41]);
p1 = plot(H,'NodeCData',H.Nodes.NodeColors,'LineWidth',H.Edges.LWidths);
colorbar
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Label Nodes and Edges

Use labeledge to label the edges whose width is larger than 6 with the label, 'Large'.
The labelnode function works in a similar manner for labeling nodes.

labeledge(p1,find(H.Edges.LWidths > 6),'Large')
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Highlight Shortest Path

Find the shortest path between node 11 and node 37 in the subgraph, H. Highlight the
edges along this path in red, and increase the size of the end nodes on the path.

path = shortestpath(H,11,37)

path = 

    11    12    17    18    19    24    25    30    36    37

highlight(p1,[11 37])
highlight(p1,path,'EdgeColor','r')
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Remove the node labels and colorbar, and make all of the nodes black.

p1.NodeLabel = {};
colorbar off
p1.NodeColor = 'black';
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Find a different shortest path that ignores the edge weights. Highlight this path in
green.

path2 = shortestpath(H,11,37,'Method','unweighted')

path2 = 

    11    12    13    14    15    20    25    30    31    37

highlight(p1,path2,'EdgeColor','g')
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Plotting Large Graphs

It is common to create graphs that have hundreds of thousands, or even millions, of
nodes and/or edges. For this reason, plot treats large graphs slightly differently to
maintain readability and performance. The plot function makes these adjustments
when working with graphs that have more than 100 nodes:

1 The default graph layout method is always 'subspace'.
2 The nodes are no longer labeled automatically.
3 The MarkerSize property is set to 2. (Smaller graphs have a marker size of 4).
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4 The ArrowSize property of directed graphs is set to 4. (Smaller directed graphs use
an arrow size of 7).

See Also
digraph | graph | plot

More About
• “Directed and Undirected Graphs” on page 5-2
• GraphPlot
• GraphPlot
• “Add Node Properties to Graph Plot Data Cursor” on page 5-43
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Visualize Breadth-First and Depth-First Search
This example shows how to define a function that visualizes the results of bfsearch and
dfsearch by highlighting the nodes and edges of a graph.

Create and plot a directed graph.

s = [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10];
t = [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2];
G = digraph(s,t);
plot(G)
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Perform a depth-first search on the graph. Specify 'allevents' to return all events in
the algorithm. Also, specify Restart as true to ensure that the search visits every node
in the graph.

T = dfsearch(G, 1, 'allevents', 'Restart', true)

T =

  38x3 table

         Event          Node       Edge   
    ________________    ____    __________

    startnode             1     NaN    NaN
    discovernode          1     NaN    NaN
    edgetonew           NaN       1      7
    discovernode          7     NaN    NaN
    edgetonew           NaN       7      3
    discovernode          3     NaN    NaN
    edgetodiscovered    NaN       3      1
    edgetonew           NaN       3      5
    discovernode          5     NaN    NaN
    edgetonew           NaN       5      4
    discovernode          4     NaN    NaN
    edgetonew           NaN       4      2
    discovernode          2     NaN    NaN
    edgetonew           NaN       2      6
    discovernode          6     NaN    NaN
    edgetodiscovered    NaN       6      4
    finishnode            6     NaN    NaN
    finishnode            2     NaN    NaN
    finishnode            4     NaN    NaN
    finishnode            5     NaN    NaN
    edgetofinished      NaN       3      6
    edgetonew           NaN       3      8
    discovernode          8     NaN    NaN
    edgetodiscovered    NaN       8      7
    finishnode            8     NaN    NaN
    finishnode            3     NaN    NaN
    finishnode            7     NaN    NaN
    finishnode            1     NaN    NaN
    startnode             9     NaN    NaN
    discovernode          9     NaN    NaN
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    edgetofinished      NaN       9      1
    edgetofinished      NaN       9      6
    edgetofinished      NaN       9      8
    finishnode            9     NaN    NaN
    startnode            10     NaN    NaN
    discovernode         10     NaN    NaN
    edgetofinished      NaN      10      2
    finishnode           10     NaN    NaN

The values in the table, T, are useful for visualizing the search. The function
visualize_search.m shows one way to use the results of searches performed with
bfsearch and dfsearch to highlight the nodes and edges in the graph according to the
table of events, T. The function pauses before each step in the algorithm, so you can
slowly step through the search by pressing any key.

Save visualize_search.m in the current folder.

function visualize_search(G,t)
% G is a graph or digraph object, and t is a table resulting from a call to
% BFSEARCH or DFSEARCH on that graph.
%
% Example inputs:
% g = digraph([1 2 3 3 3 3 4 5 6 7 8 9 9 9 10], [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2]);
% t = dfsearch(g, 1, 'allevents', 'Restart', true);

% Copyright 1984-2015 The MathWorks, Inc.

if isa(G,'graph')
    % Replace graph with corresponding digraph, because we need separate
    % edges for both directions
    G = digraph(adjacency(G));
end

h = plot(G,'NodeColor',[0.5 0.5 0.5],'EdgeColor',[0.5 0.5 0.5]);

for ii=1:size(t,1)
    switch t.Event(ii)
        case 'startnode'
            highlight(h,t.Node(ii),'MarkerSize',min(h.MarkerSize)*2);
        case 'discovernode'
            highlight(h,t.Node(ii),'NodeColor','r');
        case 'finishnode'
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            highlight(h,t.Node(ii),'NodeColor','k');
        case 'edgetonew'
            highlight(h,t.Edge(ii,1),t.Edge(ii,2),'EdgeColor','b');
        case 'edgetodiscovered'
            highlight(h,t.Edge(ii,1),t.Edge(ii,2),'EdgeColor',[0.8 0 0.8]);
        case 'edgetofinished'
            highlight(h,t.Edge(ii,1),t.Edge(ii,2),'EdgeColor',[0 0.8 0]);
    end
    
    disp('Strike any key to continue...')
    pause
end
disp('Done.')
close all

Use this command to run visualize_search.m on graph G and search result T:

  visualize_search(G,T)

The graph begins as all gray, and then a new piece of the search result appears each time
you press a key. The search results are highlighted according to:

• 'startnode' - Starting nodes increase in size.
• 'discovernode' - Nodes turn red as they are discovered.
• 'finishnode' - Nodes turn black after they are finished.
• 'edgetonew' - Edges that lead to undiscovered nodes turn blue.
• 'edgetodiscovered' - Edges that lead to discovered nodes turn magenta.
• 'edgetofinished' - Edges that lead to finished nodes turn green.

See Also
bfsearch | dfsearch | digraph | graph

More About
• “Directed and Undirected Graphs” on page 5-2
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Partition Graph with Laplacian Matrix
This example shows how to use the Laplacian matrix of a graph to compute the Fiedler
vector. The Fiedler vector can be used to partition the graph into two subgraphs.

Load Data

Load the data set barbellgraph.mat, which contains the sparse adjacency matrix and
node coordinates of a barbell graph.

load barbellgraph.mat

Plot Graph

Plot the graph using the custom node coordinates xy.

G = graph(A,'OmitSelfLoops');
p = plot(G,'XData',xy(:,1),'YData',xy(:,2),'Marker','.','MarkerSize',4.5);
axis equal
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Calculate Laplacian Matrix and Fiedler Vector

Calculate the Laplacian matrix of the graph. Then, calculate the two smallest
eigenvalues and corresponding eigenvectors using eigs.

L = laplacian(G);
[V,D] = eigs(L,2,'sm');

The Fiedler vector is the eigenvector corresponding to the second smallest eigenvalue of
the graph. The smallest eigenvalue is zero, indicating that the graph has one connected
component. In this case, the first column in V corresponds to the second smallest
eigenvalue D(1,1).

D
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D = 

   1.0e-03 *

    0.0000         0
         0    0.2873

w = V(:,1);

Finding the Fiedler vector using eigs is scalable to larger graphs, since only a subset of
the eigenvalues and eigenvectors are computed, but for smaller graphs it is equally
feasible to convert the Laplacian matrix to full storage and use eig(full(L)).

Partition Graph

Partition the graph into two subgraphs using the Fiedler vector w. A node is assigned to
subgraph A if it has a positive value in w. Otherwise, the node is assigned to subgraph B.
This practice is called a sign cut or zero threshold cut. The sign cut minimizes the weight
of the cut, subject to the upper and lower bounds on the weight of any nontrivial cut of
the graph.

Partition the graph using the sign cut. Highlight the subgraph of nodes with w>=0 in red,
and the nodes with w<0 in black.

highlight(p,find(w>=0),'NodeColor','r') % subgraph A
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highlight(p,find(w<0),'NodeColor','k') % subgraph B

For the bar bell graph, this partition bisects the graph nicely into two equal sets of nodes.
However, the sign cut does not always produce a balanced cut.

It is always possible to bisect a graph by calculating the median of w and using it as a
threshold value. This partition is called the median cut, and it guarantees an equal
number of nodes in each subgraph.

You can use the median cut by first shifting the values in w by the median:

w_med = w - median(w);
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Then, partition the graph by sign in w_med. For the bar bell graph, the median of w is
close to zero, so the two cuts produce similar bisections.

See Also
digraph | graph | laplacian | subgraph

More About
• “Directed and Undirected Graphs” on page 5-2
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Add Node Properties to Graph Plot Data Cursor
This example shows how to customize the GraphPlot data cursor to display extra node
properties of a graph.

Create GraphPlot object

Create a GraphPlot graphics object for a random directed graph. Add an extra node
property wifi to the graph.

G = digraph(sprandn(20, 20, 0.05));
G.Nodes.wifi = randi([0 1], 20, 1) == 1;
h = plot(G);
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Enable Data Cursor Mode

Enable data cursor mode by selecting the data cursor icon in the figure toolbar.

Alternatively, you can select the Data Cursor item in the Tools menu, or type:
datacursormode on.

With data cursor mode enabled, click a node in the graph to bring up the cursor display.
The data cursor allows you to select nodes in a graph plot and view properties of the
nodes. By default, the data cursor for an undirected graph displays the node ID number
and degree. For directed graphs, the display includes the node ID number, in-degree, and
out-degree.
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To display extra node properties, such as wifi, the data cursor callback function needs
to be modified. For general information on using and customizing data cursors, see
“Display Data Values Interactively”.

Customize Text Displayed by Data Cursor

Customize the text displayed by the data cursor by writing a new data cursor callback
function.

1. Save the function GraphCursorCallback.m in your current directory:

function output_txt = GraphCursorCallback(obj,event_obj,NodeProperties)
% Display the position of the data cursor
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% obj          Currently not used (empty)
% event_obj    Handle to event object
% output_txt   Data cursor text (character vector or cell array of character vectors).

h = get(event_obj,'Target');
pos = get(event_obj,'Position');
ind = find(h.XData == pos(1) & h.YData == pos(2), 1);

output_txt = {['Node ' num2str(ind)], ...
    ['Wifi: ' num2str(NodeProperties.wifi(ind))]};

A standard data cursor callback function accepts two input arguments.
GraphCursorCallback accepts an additional input argument, NodeProperties, so
that the data cursor gains access to the extra node properties in the graph, such as wifi.

2. Connect the GraphCursorCallback function to the data cursor by changing the
UpdateFcn property of the data cursor manager object. This command uses an
anonymous function to pass the G.Nodes table as the third input to
GraphCursorCallback. This technique only takes a snapshot of the G.Nodes table, so
if the graph properties subsequently change, then you need to change the UpdateFcn
property again.

  hdt = datacursormode;
  hdt.UpdateFcn = @(obj,event_obj) GraphCursorCallback(obj,event_obj,G.Nodes);

3. Now that GraphCursorCallback is connected to the data cursor, delete any old data
tips in the plot, then reenable data cursor mode and select a node. The new display of the
data cursor includes the wifi node property as defined in GraphCursorCallback.
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See Also
datacursormode | digraph | graph

More About
• “Display Data Values Interactively”

 See Also
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Functions of One Variable

• “Create and Evaluate Polynomials” on page 6-2
• “Roots of Polynomials” on page 6-4
• “Integrate and Differentiate Polynomials” on page 6-10
• “Polynomial Curve Fitting” on page 6-12
• “Roots of Scalar Functions” on page 6-14
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Create and Evaluate Polynomials
This example shows how to represent a polynomial as a vector in MATLAB® and
evaluate the polynomial at points of interest.

Representing Polynomials

MATLAB® represents polynomials as row vectors containing coefficients ordered by
descending powers. For example, the three-element vector

p = [p2 p1 p0];

represents the polynomial

Create a vector to represent the quadratic polynomial .
p = [1 -4 4];

Intermediate terms of the polynomial that have a coefficient of 0 must also be entered
into the vector, since the 0 acts as a placeholder for that particular power of x.

Create a vector to represent the polynomial .
p = [4 0 0 -3 2 33];

Evaluating Polynomials

After entering the polynomial into MATLAB® as a vector, use the polyval function to
evaluate the polynomial at a specific value.

Use polyval to evaluate .

polyval(p,2)

ans = 153

Alternatively, you can evaluate a polynomial in a matrix sense using polyvalm. The

polynomial expression in one variable, , becomes the matrix
expression
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where X is a square matrix and I is the identity matrix.

Create a square matrix, X, and evaluate p at X.

X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y = 

      154392       78561      193065
       49001       24104       59692
      215378      111419      269614

See Also
poly | polyval | polyvalm | roots

More About
• “Roots of Polynomials” on page 6-4
• “Integrate and Differentiate Polynomials” on page 6-10
• “Polynomial Curve Fitting” on page 6-12

 See Also
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Roots of Polynomials
This example shows several different methods to calculate the roots of a polynomial.

In this section...
“Numeric Roots” on page 6-4
“Roots Using Substitution” on page 6-5
“Roots in a Specific Interval” on page 6-6
“Symbolic Roots” on page 6-8

Numeric Roots
The roots function calculates the roots of a single-variable polynomial represented by a
vector of coefficients.

For example, create a vector to represent the polynomial x x
2

6- - , then calculate the
roots.

p = [1 -1 -6];
r = roots(p)

r =

     3
    -2

By convention, MATLAB returns the roots in a column vector.

The poly function converts the roots back to polynomial coefficients. When operating on
vectors, poly and roots are inverse functions, such that poly(roots(p)) returns p
(up to roundoff error, ordering, and scaling).

p2 = poly(r)

p2 =

     1    -1    -6

When operating on a matrix, the poly function computes the characteristic polynomial of
the matrix. The roots of the characteristic polynomial are the eigenvalues of the matrix.
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Therefore, roots(poly(A)) and eig(A) return the same answer (up to roundoff error,
ordering, and scaling).

Roots Using Substitution

You can solve polynomial equations involving trigonometric functions by simplifying the
equation using a substitution. The resulting polynomial of one variable no longer
contains any trigonometric functions.

For example, find the values of  that solve the equation

Use the fact that  to express the equation entirely in terms of sine
functions:

Use the substitution  to express the equation as a simple polynomial equation:

Create a vector to represent the polynomial.

p = [-3 -1 6];

Find the roots of the polynomial.

r = roots(p)

r = 

   -1.5907
    1.2573

To undo the substitution, use . The asin function calculates the inverse
sine.
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theta = asin(r)

theta = 
  -1.5708 + 1.0395i
   1.5708 - 0.7028i

Verify that the elements in theta are the values of  that solve the original equation
(within roundoff error).

f = @(Z) 3*cos(Z).^2 - sin(Z) + 3;
f(theta)

ans = 
   1.0e-14 *

  -0.0888 + 0.0647i
   0.2665 + 0.0399i

Roots in a Specific Interval

Use the fzero function to find the roots of a polynomial in a specific interval. Among
other uses, this method is suitable if you plot the polynomial and want to know the value
of a particular root.

For example, create a function handle to represent the polynomial
.

p = @(x) 3*x.^7 + 4*x.^6 + 2*x.^5 + 4*x.^4 + x.^3 + 5*x.^2;

Plot the function over the interval .

x = -2:0.1:1;
plot(x,p(x))
ylim([-100 50])
grid on
hold on
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From the plot, the polynomial has a trivial root at 0 and another near -1.5. Use fzero
to calculate and plot the root that is near -1.5.

Z = fzero(p, -1.5)

Z = -1.6056

plot(Z,p(Z),'r*')
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Symbolic Roots

If you have Symbolic Math Toolbox, then there are additional options for evaluating
polynomials symbolically. One way is to use the solve function.

syms x
s = solve(x^2-x-6)

s =
 
 -2
  3
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Another way is to use the factor function to factor the polynomial terms.

F = factor(x^2-x-6)

F =
 
[ x + 2, x - 3]

See “Solve Algebraic Equation” (Symbolic Math Toolbox) for more information.

See Also
eig | poly | roots

More About
• “Create and Evaluate Polynomials” on page 6-2
• “Roots of Scalar Functions” on page 6-14
• “Integrate and Differentiate Polynomials” on page 6-10

 See Also
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Integrate and Differentiate Polynomials
This example shows how to use the polyint and polyder functions to analytically
integrate or differentiate any polynomial represented by a vector of coefficients.

Use polyder to obtain the derivative of the polynomial . The

resulting polynomial is .

p = [1 0 -2 -5];
q = polyder(p)

q = 

     3     0    -2

Similarly, use polyint to integrate the polynomial . The resulting

polynomial is .

p = [4 -3 0 1];
q = polyint(p)

q = 

     1    -1     0     1     0

polyder also computes the derivative of the product or quotient of two polynomials. For

example, create two vectors to represent the polynomials  and

.

a = [1 3 5];
b = [2 4 6];

Calculate the derivative  by calling polyder with a single output
argument.
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c = polyder(a,b)

c = 

     8    30    56    38

Calculate the derivative  by calling polyder with two output arguments. The
resulting polynomial is

[q,d] = polyder(a,b)

q = 

    -2    -8    -2

d = 

     4    16    40    48    36

See Also
conv | deconv | polyder | polyint

More About
• “Analytic Solution to Integral of Polynomial” on page 15-9
• “Create and Evaluate Polynomials” on page 6-2

 See Also
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Polynomial Curve Fitting
This example shows how to fit a polynomial curve to a set of data using polyfit. Use
the polyfit function to find the coefficients of a polynomial that fits a set of data in a
least-squares sense using the syntax

p = polyfit(x,y,n),

where:

• x and y are vectors containing the x and y data to be fitted
• n is the degree of the polynomial to return

Consider the x-y test data

x = [1 2 3 4 5];
y = [5.5 43.1 128 290.7 498.4];

Use polyfit to find a third-degree polynomial that approximately fits the data.

p = polyfit(x,y,3)

p =

   -0.1917   31.5821  -60.3262   35.3400

After you obtain the polynomial using polyfit, use polyval to evaluate the polynomial
at other points that might not have been included in the original data.

Compute the values of the polyfit estimate over a finer domain and plot the estimate
over the real data values for comparison.

x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on
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See Also
polyfit | polyval

More About
• “Programmatic Fitting”
• “Create and Evaluate Polynomials” on page 6-2

 See Also
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Roots of Scalar Functions
In this section...
“Solving a Nonlinear Equation in One Variable” on page 6-14
“Using a Starting Interval” on page 6-16
“Using a Starting Point” on page 6-17

Solving a Nonlinear Equation in One Variable

The fzero function attempts to find a root of one equation with one variable. You can
call this function with either a one-element starting point or a two-element vector that
designates a starting interval. If you give fzero a starting point x0, fzero first searches
for an interval around this point where the function changes sign. If the interval is
found, fzero returns a value near where the function changes sign. If no such interval is
found, fzero returns NaN. Alternatively, if you know two points where the function
value differs in sign, you can specify this starting interval using a two-element vector;
fzero is guaranteed to narrow down the interval and return a value near a sign change.

The following sections contain two examples that illustrate how to find a zero of a
function using a starting interval and a starting point. The examples use the function
humps.m, which is provided with MATLAB. The following figure shows the graph of
humps.

x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x');
ylabel('humps(x)')
grid on
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Setting Options For fzero

You can control several aspects of the fzero function by setting options. You set options
using optimset. Options include:

• Choosing the amount of display fzero generates — see “Set Options” on page 9-11,
“Using a Starting Interval” on page 6-16, and “Using a Starting Point” on page 6-
17.

• Choosing various tolerances that control how fzero determines it is at a root — see
“Set Options” on page 9-11.

• Choosing a plot function for observing the progress of fzero towards a root — see
“Plot Functions” on page 9-25.
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• Using a custom-programmed output function for observing the progress of fzero
towards a root — see “Output Functions” on page 9-17.

Using a Starting Interval

The graph of humps indicates that the function is negative at x = -1 and positive at x =
1. You can confirm this by calculating humps at these two points.

humps(1)

ans = 16

humps(-1)

ans = -5.1378

Consequently, you can use [-1 1] as a starting interval for fzero.

The iterative algorithm for fzero finds smaller and smaller subintervals of [-1 1]. For
each subinterval, the sign of humps differs at the two endpoints. As the endpoints of the
subintervals get closer and closer, they converge to zero for humps.

To show the progress of fzero at each iteration, set the Display option to iter using
the optimset function.

options = optimset('Display','iter');

Then call fzero as follows:

a = fzero(@humps,[-1 1],options)

 
 Func-count    x          f(x)             Procedure
    2              -1      -5.13779        initial
    3       -0.513876      -4.02235        interpolation
    4       -0.513876      -4.02235        bisection
    5       -0.473635      -3.83767        interpolation
    6       -0.115287      0.414441        bisection
    7       -0.115287      0.414441        interpolation
    8       -0.132562    -0.0226907        interpolation
    9       -0.131666    -0.0011492        interpolation
   10       -0.131618   1.88371e-07        interpolation
   11       -0.131618   -2.7935e-11        interpolation
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   12       -0.131618   8.88178e-16        interpolation
   13       -0.131618   8.88178e-16        interpolation
 
Zero found in the interval [-1, 1]

a = -0.1316

Each value x represents the best endpoint so far. The Procedure column tells you
whether each step of the algorithm uses bisection or interpolation.

You can verify that the function value at a is close to zero by entering

humps(a)

ans = 8.8818e-16

Using a Starting Point

Suppose you do not know two points at which the function values of humps differ in sign.
In that case, you can choose a scalar x0 as the starting point for fzero. fzero first
searches for an interval around this point on which the function changes sign. If fzero
finds such an interval, it proceeds with the algorithm described in the previous section. If
no such interval is found, fzero returns NaN.

For example, set the starting point to -0.2, the Display option to Iter, and call fzero:

options = optimset('Display','iter');
a = fzero(@humps,-0.2,options)

 
Search for an interval around -0.2 containing a sign change:
 Func-count    a          f(a)             b          f(b)        Procedure
    1            -0.2      -1.35385          -0.2      -1.35385   initial interval
    3       -0.194343      -1.26077     -0.205657      -1.44411   search
    5          -0.192      -1.22137        -0.208       -1.4807   search
    7       -0.188686      -1.16477     -0.211314      -1.53167   search
    9          -0.184      -1.08293        -0.216      -1.60224   search
   11       -0.177373     -0.963455     -0.222627      -1.69911   search
   13          -0.168     -0.786636        -0.232      -1.83055   search
   15       -0.154745      -0.51962     -0.245255      -2.00602   search
   17          -0.136     -0.104165        -0.264      -2.23521   search
   18        -0.10949      0.572246        -0.264      -2.23521   search
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Search for a zero in the interval [-0.10949, -0.264]:
 Func-count    x          f(x)             Procedure
   18        -0.10949      0.572246        initial
   19       -0.140984     -0.219277        interpolation
   20       -0.132259    -0.0154224        interpolation
   21       -0.131617   3.40729e-05        interpolation
   22       -0.131618  -6.79505e-08        interpolation
   23       -0.131618  -2.98428e-13        interpolation
   24       -0.131618   8.88178e-16        interpolation
   25       -0.131618   8.88178e-16        interpolation
 
Zero found in the interval [-0.10949, -0.264]

a = -0.1316

The endpoints of the current subinterval at each iteration are listed under the headings
a and b, while the corresponding values of humps at the endpoints are listed under f(a)
and f(b), respectively.

Note The endpoints a and b are not listed in any specific order: a can be greater than b
or less than b.

For the first nine steps, the sign of humps is negative at both endpoints of the current
subinterval, which is shown in the output. At the tenth step, the sign of humps is positive
at the endpoint, -0.10949, but negative at the endpoint, -0.264. From this point on,
the algorithm continues to narrow down the interval [-0.10949 -0.264], as described
in the previous section, until it reaches the value -0.1316.

See Also

More About
• “Roots of Polynomials” on page 6-4
• “Optimizing Nonlinear Functions” on page 9-2
• “Systems of Nonlinear Equations” (Optimization Toolbox)
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Computational Geometry

• “Overview” on page 7-2
• “Triangulation Representations” on page 7-3
• “Delaunay Triangulation” on page 7-17
• “Spatial Searching” on page 7-50
• “Voronoi Diagrams” on page 7-59
• “Types of Region Boundaries” on page 7-68
• “Computing the Convex Hull” on page 7-76
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Overview
MATLAB provides a variety of tools to solve problems that are geometric in nature.
These problems encompass simple geometric queries such as point-in-polygon tests, to
more complex problems such as nearest-neighbor queries. Convex hulls, Delaunay
triangulations, and Voronoi diagrams are examples of fundamental geometric algorithms
that MATLAB provides. These algorithms have many practical uses in the scientific
development.

MATLAB provides both function-based and class-based tools for computational geometry.
The function-based tools are convenient when the output from the function is sufficiently
complete to get you to the solution. The class-based tools are more versatile because they
provide complementary methods that are often needed to work with the resulting data. A
function typically takes input, performs some computation, and outputs the result in
matrix format.

In contrast, a class may take input, perform some computation, cache the result and
provide methods that allow you to query and work with the result more efficiently. For
example, the delaunay function creates a triangulation from a set of points and returns
the triangulation in an array. The delaunayTriangulation class also triangulates a
set of points. In addition, it allows you to modify the triangulation and it provides
methods for finding nearest neighbors and traversing the triangulation data structure,
etc. These methods are very efficient because the class holds the triangulation in
memory.
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Triangulation Representations

2-D and 3-D Domains

Triangulations are often used to represent 2-D and 3-D geometric domains in application
areas such as computer graphics, physical modeling, geographic information systems,
medical imaging, and more. The map polygon shown here

can be represented by the triangulation on the map shown below.
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The triangulation decomposes a complex polygon into a collection of simpler triangular
polygons. You can use these polygons for developing geometric-based algorithms or
graphics applications.

Similarly, you can represent the boundary of a 3-D geometric domain using a
triangulation. The figure below shows the convex hull of a set of points in 3-D space.
Each facet of the hull is a triangle.

Triangulation Matrix Format

MATLAB uses a matrix format to represent triangulations. This format has two parts:

• The vertices, represented as a matrix in which each row contains the coordinates of a
point in the triangulation.

• The triangulation connectivity, represented as a matrix in which each row defines a
triangle or tetrahedon.

This figure shows a simple 2-D triangulation.
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The following table shows the vertex information.
Vertices

Vertex ID x-coordinate y-coordinate
V1 2.5 8.0
V2 6.5 8.0
V3 2.5 5.0
V4 6.5 5.0
V5 1.0 6.5
V6 8.0 6.5
The data in the previous table is stored as a matrix in the MATLAB environment. The
vertex IDs are labels used for identifying specific vertices. They are shown to illustrate
the concept of a vertex ID, but they are not stored explicitly. Instead, the row numbers of
the matrix serve as the vertex IDs.

The triangulation connectivity data is shown in this table.
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Connectivity
Triangle ID IDs of Bounding Vertices
T1 5 3 1
T2 3 2 1
T3 3 4 2
T4 4 6 2
The data in this table is stored as a matrix in the MATLAB environment. The triangle
IDs are labels used for identifying specific triangles. They are shown to illustrate the
concept of a triangle ID, but they are not stored explicitly. Instead, the row numbers of
the matrix serve as the triangle IDs.

You can see that triangle T1 is defined by three vertices, {V5, V3, V1}. Similarly, T4 is
defined by the vertices, {V4, V6, V2}. This format extends naturally to higher
dimensions, which require additional columns of data. For example, a tetrahedron in 3-D
space is defined by four vertices, each of which have three coordinates, (x, y, z).

You can represent and query the following types of triangulations using MATLAB:

• 2-D triangulations consisting of triangles bounded by vertices and edges
• 3-D surface triangulations consisting of triangles bounded by vertices and edges
• 3-D triangulations consisting of tetrahedra bounded by vertices, edges, and faces

Querying Triangulations Using the triangulation Class

The matrix format provides a compact low-level, array-based representation for
triangulations. When you use triangulations to develop algorithms, you might need more
information about the geometric properties, topology, and adjacency information.

For example, you might compute the triangle incenters before plotting the annotated
triangulation shown below. In this case, you use the incenters to display the triangle
labels (T1, T2, etc.) within each triangle. If you want to plot the boundary in red, you
need to determine the edges that are referenced by only one triangle.
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The triangulation Class

You can use triangulation to create an in-memory representation of any 2-D or 3-D
triangulation data that is in matrix format, such as the matrix output from the
delaunay function or other software tools. When your data is represented using
triangulation, you can perform topological and geometric queries, which you can use
to develop geometric algorithms. For example, you can find the triangles or tetrahedra
attached to a vertex, those that share an edge, their circumcenters, and other features.

You can create a triangulation in one of two ways:

• Pass existing data that you have in matrix format to triangulation. This data can
be the output from a MATLAB function, such as delaunay or convhull. You also
can import triangulation data that was created by another software application.
When you work with imported data, be sure the connectivity data references the
vertex array using 1-based indexing instead of 0-based indexing.

• Pass a set of points to delaunayTriangulation. The resulting Delaunay
triangulation is a special kind of triangulation. This means you can perform any
triangulation query on your data, as well as any Delaunay-specific query. In more
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formal MATLAB language terms, delaunayTriangulation is a subclass of
triangulation.

Creating a triangulation from Matrix Data

This example shows how to use the triangulation matrix data to create a triangulation,
explore what it is, and explore what it can do.

Create a matrix, P, that contains the vertex data.

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

Define the connectivity, T.

T = [5  3  1;
     3  2  1;
     3  4  2;
     4  6  2];

Create a triangulation from this data.

TR = triangulation(T,P)

TR = 
  triangulation with properties:

              Points: [6x2 double]
    ConnectivityList: [4x3 double]

Access the properties in a triangulation in the same way you access the fields of a
struct. For example, examine the Points property, which contains the coordinates of
the vertices.

TR.Points

ans = 

    2.5000    8.0000
    6.5000    8.0000

7 Computational Geometry

7-8



    2.5000    5.0000
    6.5000    5.0000
    1.0000    6.5000
    8.0000    6.5000

Next, examine the connectivity.

TR.ConnectivityList

ans = 

     5     3     1
     3     2     1
     3     4     2
     4     6     2

The Points and ConnectivityList properties define the matrix data for the
triangulation.

The triangulation class is a wrapper around the matrix data. The real benefit is the
usefulness of the triangulation class methods. The methods are like functions that
accept a triangulation and other relevant input data.

The triangulation class provides an easy way to index into the ConnectivityList
property matrix. Access the first triangle in the triangulation.

TR.ConnectivityList(1,:)

ans = 

     5     3     1

Another way of getting the first triangle is TR(1,:).

Examine the first vertex of the first triangle.

TR(1,1)

ans = 5

Examine the second vertex of the first triangle.
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TR(1,2)

ans = 3

Now, examine all the triangles in the triangulation.

TR(:,:)

ans = 

     5     3     1
     3     2     1
     3     4     2
     4     6     2

Use triplot to plot the triangulation. The triplot function is not a
triangulation method, but it accepts and can plot a triangulation.

figure
triplot(TR)
axis equal
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Use the triangulation method, freeBoundary, to query the free boundary and
highlight it in a plot. This method returns the edges of the triangulation that are shared
by only one triangle. The returned edges are expressed in terms of the vertex IDs.

boundaryedges = freeBoundary(TR)';

Now plot the boundary edges as a red line.

hold on 
plot(P(boundaryedges,1),P(boundaryedges,2),'-r','LineWidth',2)
hold off
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You can use the freeBoundary method to validate a triangulation. For example, if you
observed red edges in the interior of the triangulation, then it would indicate a problem
in how the triangles are connected.

Creating a triangulation Using delaunayTriangulation

This example shows how to create a Delaunay triangulation using
delaunayTriangulation.

When you create a Delaunay triangulation using the delaunayTriangulation class,
you automatically get access to the triangulation methods because
delaunayTriangulation is a subclass of triangulation.
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Create a delaunayTriangulation from a set of points.

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [6x2 double]
    ConnectivityList: [4x3 double]
         Constraints: []

The resulting delaunayTriangulation object has the properties, Points and
ConnectivityList, just like a triangulation object.

You can access the triangulation using direct indexing, just like triangulation. For
example, examine the connectivity of the first triangle.

DT(1,:)

ans = 

     5     3     1

Next, examine the connectivity of the entire triangulation.

DT(:,:)

ans = 

     5     3     1
     3     4     1
     1     4     2
     4     6     2

Use the triplot function to plot the triangulation.
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triplot(DT)
axis equal

The parent class, triangulation, provides the incenter method to compute the
incenters of each triangle.
IC = incenter(DT)
IC = 

    1.8787    6.5000
    3.5000    6.0000
    5.5000    7.0000
    7.1213    6.5000
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The returned value, IC, is an array of coordinates representing the incenters of the
triangles.

Now, use the incenters to find the positions for placing triangle labels on the plot.

hold on
numtri = size(DT,1);
trilabels = arrayfun(@(P) {sprintf('T%d', P)}, (1:numtri)');
Htl = text(IC(:,1),IC(:,2),trilabels,'FontWeight','bold', ...
'HorizontalAlignment','center','Color','blue');
hold off
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Instead of creating a Delaunay triangulation using delaunayTriangulation, you could
use the delaunay function to create the triangulation connectivity data, and then pass
the connectivity data to triangulation. For example,

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

T = delaunay(P);
TR = triangulation(T,P);
IC = incenter(TR);

Both approaches are valid in this example, but if you want to create a Delaunay
triangulation and perform queries on it, then you should use delaunayTriangulation
for these reasons:

• The delaunayTriangulation class provides additional methods that are useful for
working with triangulations. For example, you can to perform nearest-neighbor and
point-in-triangle searches.

• It allows you to edit the triangulation to add, move, or remove points.
• It allows you to create constrained Delaunay triangulations. This allows you to create

a triangulation for a 2-D domain.

See Also
delaunay | delaunayTriangulation | freeBoundary | triangulation | triplot

More About
• “Triangulation Representations” on page 7-3
• “Delaunay Triangulation” on page 7-17
• “Spatial Searching” on page 7-50

7 Computational Geometry

7-16



Delaunay Triangulation

In this section...
“Definition of Delaunay Triangulation” on page 7-17
“Creating Delaunay Triangulations” on page 7-19
“Triangulation of Point Sets Containing Duplicate Locations” on page 7-47

Definition of Delaunay Triangulation

Delaunay triangulations are widely used in scientific computing in many diverse
applications. While there are numerous algorithms for computing triangulations, it is the
favorable geometric properties of the Delaunay triangulation that make it so useful.

The fundamental property is the Delaunay criterion. In the case of 2-D triangulations,
this is often called the empty circumcircle criterion. For a set of points in 2-D, a Delaunay
triangulation of these points ensures the circumcircle associated with each triangle
contains no other point in its interior. This property is important. In the illustration
below, the circumcircle associated with T1 is empty. It does not contain a point in its
interior. The circumcircle associated with T2 is empty. It does not contain a point in its
interior. This triangulation is a Delaunay triangulation.

The triangles below are different. The circumcircle associated with T1 is not empty. It
contains V3 in its interior. The circumcircle associated with T2 is not empty. It contains
V1 in its interior. This triangulation is not a Delaunay triangulation.
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Delaunay triangles are said to be “well shaped” because in fulfilling the empty
circumcircle property, triangles with large internal angles are selected over ones with
small internal angles. The triangles in the non-Delaunay triangulation have sharp
angles at vertices V2 and V4. If the edge {V2, V4} were replaced by an edge joining V1
and V3, the minimum angle would be maximized and the triangulation would become a
Delaunay triangulation. Also, the Delaunay triangulation connects points in a nearest-
neighbor manner. These two characteristics, well-shaped triangles and the nearest-
neighbor relation, have important implications in practice and motivate the use of
Delaunay triangulations in scattered data interpolation.

While the Delaunay property is well defined, the topology of the triangulation is not
unique in the presence of degenerate point sets. In two dimensions, degeneracies arise
when four or more unique points lie on the same circle. The vertices of a square, for
example, have a nonunique Delaunay triangulation.

The properties of Delaunay triangulations extend to higher dimensions. The
triangulation of a 3-D set of points is composed of tetrahedra. The next illustration shows
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a simple 3-D Delaunay triangulation made up of two tetrahedra. The circumsphere of
one tetrahedron is shown to highlight the empty circumsphere criterion.

A 3-D Delaunay triangulation produces tetrahedra that satisfy the empty circumsphere
criterion.

Creating Delaunay Triangulations
MATLAB provides two ways to create Delaunay triangulations:

• The functions delaunay and delaunayn
• The delaunayTriangulation class

The delaunay function supports the creation of 2-D and 3-D Delaunay triangulations.
The delaunayn function supports creating Delaunay triangulations in 4-D and higher.

Tip Creating Delaunay triangulations in dimensions higher than 6-D is generally not
practical for moderate to large point sets due to the exponential growth in required
memory.

The delaunayTriangulation class supports creating Delaunay triangulations in 2-D
and 3-D. It provides many methods that are useful for developing triangulation-based
algorithms. These class methods are like functions, but they are restricted to work with
triangulations created using delaunayTriangulation. The delaunayTriangulation
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class also supports the creation of related constructs such as the convex hull and Voronoi
diagram. It also supports the creation of constrained Delaunay triangulations.

In summary:

• The delaunay function is useful when you only require the basic triangulation data,
and that data is sufficiently complete for your application.

• The delaunayTriangulation class offers more functionality for developing
triangulation-based applications. It is useful when you require the triangulation and
you want to perform any of these operations:

• Search the triangulation for triangles or tetrahedra enclosing a query point.
• Use the triangulation to perform a nearest-neighbor point search.
• Query the triangulation's topological adjacency or geometric properties.
• Modify the triangulation to insert or remove points.
• Constrain edges in the triangulation—this is called a constrained Delaunay

triangulation.
• Triangulate a polygon and optionally remove the triangles that are outside of the

domain.
• Use the Delaunay triangulation to compute the convex hull or Voronoi diagram.

Using the delaunay and delaunayn functions

The delaunay and delaunayn functions take a set of points and produce a triangulation
in matrix format. Refer to “Triangulation Matrix Format” on page 7-4 for more
information on this data structure. In 2-D, the delaunay function is often used to
produce a triangulation that can be used to plot a surface defined in terms of a set of
scattered data points. In this application, it’s important to note that this approach can
only be used if the surface is single-valued. For example, it could not be used to plot a
spherical surface because there are two z values corresponding to a single (x, y)
coordinate. A simple example demonstrates how the delaunay function can be used to
plot a surface representing a sampled data set.

This example shows how to use the delaunay function to create a 2-D Delaunay
triangulation from the seamount data set. A seamount is an underwater mountain. The
data set consists of a set of longitude (x) and latitude (y) locations, and corresponding
seamount elevations (z) measured at those coordinates.

Load the seamount data set and view the (x, y) data as a scatter plot.
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load seamount
plot(x,y,'.','markersize',12)
xlabel('Longitude'), ylabel('Latitude')
grid on

Construct a Delaunay triangulation from this point set and use triplot to plot the
triangulation in the existing figure.

tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off
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Add the depth data (z) from seamount to lift the vertices and create the surface. Create a
new figure and use trimesh to plot the surface in wireframe mode.

figure
hidden on
trimesh(tri,x,y,z)
xlabel('Longitude'),ylabel('Latitude'),zlabel('Depth in Feet');
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If you want to plot the surface in shaded mode, use trisurf instead of trimesh.

A 3-D Delaunay triangulation also can be created using the delaunay function. This
triangulation is composed of tetrahedra.

This example shows how to create a 3-D Delaunay triangulation of a random data set.
The triangulation is plotted using tetramesh, and the FaceAlpha option adds
transparency to the plot.

X = gallery('uniformdata',[30 3],0);
tet = delaunay(X);
faceColor  = [0.6875 0.8750 0.8984];
tetramesh(tet,X,'FaceColor', faceColor,'FaceAlpha',0.3);
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MATLAB provides the delaunayn function to support the creation of Delaunay
triangulations in dimension 4-D and higher. Two complementary functions tsearchn
and dsearchn are also provided to support spatial searching for N-D triangulations. See
“Spatial Searching” on page 7-50 for more information on triangulation-based search.

Using the delaunayTriangulation Class

The delaunayTriangulation class provides another way to create Delaunay
triangulations in MATLAB. While delaunay and delaunayTriangulation use the
same underlying algorithm and produce the same triangulation,
delaunayTriangulation provides complementary methods that are useful for
developing Delaunay-based algorithms. These methods are like functions that are
packaged together with the triangulation data into a container called a class. Keeping
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everything together in a class provides a more organized setup that improves ease of use.
It also improves the performance of triangulation-based searches such as point-location
and nearest-neighbor. delaunayTriangulation supports incremental editing of the
Delaunay triangulation. You also can impose edge constraints in 2-D.

“Triangulation Representations” on page 7-3 introduces the triangulation class, which
supports topological and geometric queries for 2-D and 3-D triangulations. A
delaunayTriangulation is a special kind of triangulation. This means you can
perform any triangulation query on a delaunayTriangulation in addition to the
Delaunay-specific queries. In more formal MATLAB language terms,
delaunayTriangulation is a subclass of triangulation.

This example shows how to create, query, and edit a Delaunay triangulation from the
seamount data using delaunayTriangulation. The seamount data set contains (x, y)
locations and corresponding elevations (z) that define the surface of the seamount.

Load and triangulate the (x, y) data.

load seamount
DT = delaunayTriangulation(x,y)

DT = 
  delaunayTriangulation with properties:

              Points: [294x2 double]
    ConnectivityList: [566x3 double]
         Constraints: []

The Constraints property is empty because there aren't any imposed edge constraints.
The Points property represents the coordinates of the vertices, and the
ConnectivityList property represents the triangles. Together, these two properties
define the matrix data for the triangulation.

The delaunayTriangulation class is a wrapper around the matrix data, and it offers a
set of complementary methods. You access the properties in a delaunayTriangulation
in the same way you access the fields of a struct.

Access the vertex data.
DT.Points;

Access the connectivity data.
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DT.ConnectivityList;

Access the first triangle in the ConnectivityList property.

DT.ConnectivityList(1,:)

ans = 

   205   230   262

delaunayTriangulation provides an easy way to index into the ConnectivityList
property matrix.

Access the first triangle.

DT(1,:)

ans = 

   205   230   262

Examine the first vertex of the first triangle.

DT(1,1)

ans = 205

Examine all the triangles in the triangulation.

DT(:,:);

Indexing into the delaunayTriangulation output, DT, works like indexing into the
triangulation array output from delaunay. The difference between the two are the extra
methods that you can call on DT (for example, nearestNeighbor and pointLocation).

Use triplot to plot the delaunayTriangulation. The triplot function is not a
delaunayTriangulation method, but it accepts and can plot a
delaunayTriangulation.

triplot(DT); 
axis equal
xlabel('Longitude'), ylabel('Latitude')
grid on
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Alternatively, you could use triplot(DT(:,:), DT.Points(:,1), DT.Points(:,
2)); to get the same plot.

Use the delaunayTriangulation method, convexHull, to compute the convex hull
and add it to the plot. Since you already have a Delaunay triangulation, this method
allows you to derive the convex hull more efficiently than a full computation using
convhull.
hold on
k = convexHull(DT);
xHull = DT.Points(k,1);
yHull = DT.Points(k,2);
plot(xHull,yHull,'r','LineWidth',2); 
hold off
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You can incrementally edit the delaunayTriangulation to add or remove points. If
you need to add points to an existing triangulation, then an incremental addition is
faster than a complete retriangulation of the augmented point set. Incremental removal
of points is more efficient when the number of points to be removed is small relative to
the existing number of points.

Edit the triangulation to remove the points on the convex hull from the previous
computation.
figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on

7 Computational Geometry

7-28



% The convex hull topology duplicates the start and end vertex.
% Remove the duplicate entry.
k(end) = [];

% Now remove the points on the convex hull.
DT.Points(k,:) = []

DT = 
  delaunayTriangulation with properties:

              Points: [274x2 double]
    ConnectivityList: [528x3 double]
         Constraints: []

% Plot the new triangulation.
hold on
triplot(DT); 
hold off
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There is one vertex that is just inside the boundary of the convex hull that was not
removed. The fact that it is interior to the hull can be seen using the Zoom-In tool in the
figure. You could plot the vertex labels to determine the index of this vertex and remove
it from the triangulation. Alternatively, you can use the nearestNeighbor method to
identify the index more readily.

The point is close to location (211.6, -48.15). Use the nearestNeighbor method to find the
nearest vertex.

vertexId = nearestNeighbor(DT, 211.6, -48.15)

vertexId = 50

Now remove that vertex from the triangulation.
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DT.Points(vertexId,:) = []

DT = 
  delaunayTriangulation with properties:

              Points: [273x2 double]
    ConnectivityList: [525x3 double]
         Constraints: []

Plot the new triangulation.

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
triplot(DT); 
hold off
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Add points to the existing triangulation. Add 4 points to form a rectangle around the
triangulation.

Padditional = [210.9 -48.5; 211.6 -48.5; ...
     211.6 -47.9; 210.9 -47.9];
DT.Points(end+(1:4),:) = Padditional

DT = 
  delaunayTriangulation with properties:

              Points: [277x2 double]
    ConnectivityList: [548x3 double]
         Constraints: []
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Close all existing figures.

close all

Plot the new triangulation.

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
triplot(DT); 
hold off
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You can edit the points in the triangulation to move them to a new location. Edit the first
of the additional point set (the vertex ID 274).

DT.Points(274,:) = [211 -48.4];

Close all existing figures.

close all

Plot the new triangulation

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
triplot(DT); 
hold off
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Use the a method of the triangulation class, vertexAttachments, to find the
attached triangles. Since the number of triangles attached to a vertex is variable, the
method returns the attached triangle IDs in a cell array. You need braces to extract the
contents.

attTris = vertexAttachments(DT,274);
hold on
triplot(DT(attTris{:},:),DT.Points(:,1),DT.Points(:,2),'g')
hold off
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delaunayTriangulation also can be used to triangulate points in 3-D space. The
resulting triangulation is composed of tetrahedra.

This example shows how to use a delaunayTriangulation to create and plot the
triangulation of 3-D points.

P = gallery('uniformdata',30,3,0);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [30x3 double]
    ConnectivityList: [117x4 double]
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         Constraints: []

faceColor  = [0.6875 0.8750 0.8984];
tetramesh(DT,'FaceColor', faceColor,'FaceAlpha',0.3);

The tetramesh function plots both the internal and external faces of the triangulation.
For large 3-D triangulations, plotting the internal faces might be an unnecessary use of
resources. A plot of the boundary might be more appropriate. You can use the
freeBoundary method to get the boundary triangulation in matrix format. Then pass
the result to trimesh or trisurf.
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Constrained Delaunay Triangulation

The delaunayTriangulation class allows you to constrain edges in a 2-D
triangulation. This means you can choose a pair of points in the triangulation and
constrain an edge to join those points. You can picture this as “forcing” an edge between
one or more pairs of points. The following example shows how edge constraints can affect
the triangulation.

The triangulation below is a Delaunay triangulation because it respects the empty
circumcircle criterion.

Triangulate a set of points with an edge constraint specified between vertex V1 and V3.

Define the point set.

P = [2 4; 6 1; 9 4; 6 7];

Define a constraint, C, between V1 and V3.

C = [1 3];
DT = delaunayTriangulation(P,C);

Plot the triangulation and add annotations.

triplot(DT)

% Label the vertices.
hold on
numvx = size(P,1);
vxlabels = arrayfun(@(n) {sprintf('V%d', n)}, (1:numvx)');
Hpl = text(P(:,1)+0.2, P(:,2)+0.2, vxlabels, 'FontWeight', ...
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  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off

% Use the incenters to find the positions for placing triangle labels on the plot.
hold on
IC = incenter(DT);
numtri = size(DT,1);
trilabels = arrayfun(@(P) {sprintf('T%d', P)}, (1:numtri)');
Htl = text(IC(:,1),IC(:,2),trilabels,'FontWeight','bold', ...
'HorizontalAlignment','center','Color','blue');
hold off

% Plot the circumcircle associated with the triangle, T1.
hold on
[CC,r] = circumcenter(DT);
theta = 0:pi/50:2*pi;
xunit = r(1)*cos(theta) + CC(1,1);
yunit = r(1)*sin(theta) + CC(1,2);
plot(xunit,yunit,'g');
axis equal
hold off
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The constraint between vertices (V1, V3) was honored, however, the Delaunay criterion
was invalidated. This also invalidates the nearest-neighbor relation that is inherent in a
Delaunay triangulation. This means the nearestNeighbor search method provided by
delaunayTriangulation cannot be supported if the triangulation has constraints.

In typical applications, the triangulation might be composed of many points, and a
relatively small number of edges in the triangulation might be constrained. Such a
triangulation is said to be locally non-Delaunay, because many triangles in the
triangulation might respect the Delaunay criterion, but locally there might be some
triangles that do not. In many applications, local relaxation of the empty circumcircle
property is not a concern.
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Constrained triangulations are generally used to triangulate a nonconvex polygon. The
constraints give us a correspondence between the polygon edges and the triangulation
edges. This relationship enables you to extract a triangulation that represents the region.
The following example shows how to use a constrained delaunayTriangulation to
triangulate a nonconvex polygon.

Define and plot a polygon.

figure()
axis([-1 17 -1 6]);
axis equal
P = [0 0; 16 0; 16 2; 2 2; 2 3; 8 3; 8 5; 0 5];
patch(P(:,1),P(:,2),'-r','LineWidth',2,'FaceColor',...
     'none','EdgeColor','r');
 
% Label the points.
hold on
numvx = size(P,1);
vxlabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:numvx)');
Hpl = text(P(:,1)+0.2, P(:,2)+0.2, vxlabels, 'FontWeight', ...
  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off
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Create and plot the triangulation together with the polygon boundary.

figure()
subplot(2,1,1);
axis([-1 17 -1 6]);
axis equal

P = [0 0; 16 0; 16 2; 2 2; 2 3; 8 3; 8 5; 0 5];
DT = delaunayTriangulation(P);
triplot(DT)
hold on; 
patch(P(:,1),P(:,2),'-r','LineWidth',2,'FaceColor',...
     'none','EdgeColor','r');
hold off
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% Plot the standalone triangulation in a subplot.
subplot(2,1,2);
axis([-1 17 -1 6]);
axis equal
triplot(DT)

This triangulation cannot be used to represent the domain of the polygon because some
triangles cut across the boundary. You need to impose a constraint on the edges that are
cut by triangulation edges. Since all edges have to be respected, you need to constrain all
edges. The steps below show how to constrain all the edges.

Enter the constrained edge definition. Observe from the annotated figure where you need
constraints (between (V1, V2), (V2, V3), and so on).
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C = [1 2; 2 3; 3 4; 4 5; 5 6; 6 7; 7 8; 8 1];

In general, if you have N points in a sequence that define a polygonal boundary, the
constraints can be expressed as C = [(1:(N-1))' (2:N)'; N 1];.

Specify the constraints when you create the delaunayTriangulation.

DT = delaunayTriangulation(P,C);

Alternatively, you can impose constraints on an existing triangulation by setting the
Constraints property: DT.Constraints = C;.

Plot the triangulation and polygon.

figure('Color','white')
subplot(2,1,1);
axis([-1 17 -1 6]);
axis equal
triplot(DT)
hold on; 
patch(P(:,1),P(:,2),'-r','LineWidth',2, ...
     'FaceColor','none','EdgeColor','r'); 
hold off

% Plot the standalone triangulation in a subplot.
subplot(2,1,2);
axis([-1 17 -1 6]);
axis equal
triplot(DT)
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The plot shows that the edges of the triangulation respect the boundary of the polygon.
However, the triangulation fills the concavities. What is needed is a triangulation that
represents the polygonal domain. You can extract the triangles within the polygon using
the delaunayTriangulation method, isInterior. This method returns a logical
array whose true and false values that indicate whether the triangles are inside a
bounded geometric domain. The analysis is based on the Jordan Curve theorem, and the
boundaries are defined by the edge constraints. The ith triangle in the triangulation is
considered to be inside the domain if the ith logical flag is true, otherwise it is outside.

Now use the isInterior method to compute and plot the set of domain triangles.

% Plot the constrained edges in red.
figure('Color','white')

 Delaunay Triangulation

7-45



subplot(2,1,1);
plot(P(C'),P(C'+size(P,1)),'-r','LineWidth', 2);
axis([-1 17 -1 6]);

% Compute the in/out status.
IO = isInterior(DT);
subplot(2,1,2);
hold on;
axis([-1 17 -1 6]);

% Use triplot to plot the triangles that are inside.
% Uses logical indexing and dt(i,j) shorthand
% format to access the triangulation.
triplot(DT(IO, :),DT.Points(:,1), DT.Points(:,2),'LineWidth', 2)
hold off;
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Triangulation of Point Sets Containing Duplicate Locations

The Delaunay algorithms in MATLAB construct a triangulation from a unique set of
points. If the points passed to the triangulation function, or class, are not unique, the
duplicate locations are detected and the duplicate point is ignored. This produces a
triangulation that does not reference some points in the original input, namely the
duplicate points. When you work with the delaunay and delaunayn functions, the
presence of duplicates may be of little consequence. However, since many of the queries
provided by the delaunayTriangulation class are index based, it is important to
understand that delaunayTriangulation triangulates and works with the unique
data set. Therefore, indexing based on the unique point set is the convention. This data is
maintained by the Points property of delaunayTriangulation.
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The following example illustrates the importance of referencing the unique data set
stored within the Points property when working with delaunayTriangulation:

P = gallery('uniformdata',[25 2],0);
P(18,:) = P(8,:)
P(16,:) = P(6,:)
P(12,:) = P(2,:)

DT = delaunayTriangulation(P)

When the triangulation is created, MATLAB issues a warning. The Points property
shows that the duplicate points have been removed from the data.

DT = 

  delaunayTriangulation with properties:

              Points: [22x2 double]
    ConnectivityList: [31x3 double]
         Constraints: []

If for example, the Delaunay triangulation is used to compute the convex hull, the indices
of the points on the hull are indices with respect to the unique point set, DT.Points.
Therefore, use the following code to compute and plot the convex hull:

K = DT.convexHull();
plot(DT.Points(:,1),DT.Points(:,2),'.');
hold on
plot(DT.Points(K,1),DT.Points(K,2),'-r');

If the original data set containing the duplicates were used in conjunction with the
indices provided by delaunayTriangulation, then the result would be incorrect. The
delaunayTriangulation works with indices that are based on the unique data set
DT.Points. For example, the following would produce an incorrect plot, because K is
indexed with respect to DT.Points and not P:

K = DT.convexHull();
plot(P(:,1),P(:,2),'.');
hold on
plot(P(K,1),P(K,2),'-r');

It’s often more convenient to create a unique data set by removing duplicates prior to
creating the delaunayTriangulation. Doing this eliminates the potential for
confusion. This can be accomplished using the unique function as follows:
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P = gallery('uniformdata',[25 2],0);
P(18,:) = P(8,:)
P(16,:) = P(6,:)
P(12,:) = P(2,:)

[~, I, ~] = unique(P,'first','rows');
I = sort(I);
P = P(I,:);
DT = delaunayTriangulation(P)  % The point set is unique

See Also

More About
• “Spatial Searching” on page 7-50
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7-49



Spatial Searching
In this section...
“Introduction” on page 7-50
“Nearest-Neighbor Search” on page 7-50
“Point-Location Search” on page 7-54

Introduction
MATLAB provides the necessary functions for performing a spatial search using either a
Delaunay triangulation or a general triangulation. The search queries that MATLAB
supports are:

• Nearest-neighbor search (sometimes called closest-point search or proximity search).
• Point-location search (sometimes called point-in-triangle search or point-in-simplex

search, where a simplex is a triangle, tetrahedron or higher dimensional equivalent).

Given a set of points X and a query point q in Euclidean space, the nearest-neighbor
search locates a point p in X that is closer to q than to any other point in X. Given a
triangulation of X, the point-location search locates the triangle or tetrahedron that
contains the query point q. Since these methods work for both Delaunay as well as
general triangulations, you can use them even if a modification of the points violates the
Delaunay criterion. You also can search a general triangulation represented in matrix
format.

While MATLAB supports these search schemes in N dimensions, exact spatial searches
usually become prohibitive as the number of dimensions extends beyond 3-D. You should
consider approximate alternatives for large problems in up to 10 dimensions.

Nearest-Neighbor Search
There are a few ways to compute nearest-neighbors in MATLAB, depending on the
dimensionality of the problem:

• For 2-D and 3-D searches, use the nearestNeighbor method provided by the
triangulation class and inherited by the delaunayTriangulation class.

• For 4-D and higher, use the delaunayn function to construct the triangulation and
the complementary dsearchn function to perform the search. While these N-D
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functions support 2-D and 3-D, they are not as general and efficient as the
triangulation search methods.

This example shows how to perform a nearest-neighbor search in 2-D with
delaunayTriangulation.

Begin by creating a random set of 15 points.

X = [3.5 8.2; 6.8 8.3; 1.3 6.5; 3.5 6.3; 5.8 6.2; 8.3 6.5;...
    1 4; 2.7 4.3; 5 4.5; 7 3.5; 8.7 4.2; 1.5 2.1; 4.1 1.1; ...
    7 1.5; 8.5 2.75];

Plot the points and add annotations to show the ID labels.

plot(X(:,1),X(:,2),'ob')
hold on
vxlabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:15)');
Hpl = text(X(:,1)+0.2, X(:,2)+0.2, vxlabels, 'FontWeight', ...
  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off
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Create a Delaunay triangulation from the points.

dt = delaunayTriangulation(X);

Create some query points and for each query point find the index of its corresponding
nearest neighbor in X using the nearestNeighbor method.

numq = 10;
rng(0,'twister');
q = 2+rand(numq,2)*6;
xi = nearestNeighbor(dt, q);

Add the query points to the plot and add line segments joining the query points to their
nearest neighbors.
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xnn = X(xi,:);

hold on
plot(q(:,1),q(:,2),'or');
plot([xnn(:,1) q(:,1)]',[xnn(:,2) q(:,2)]','-r');

vxlabels = arrayfun(@(n) {sprintf('q%d', n)}, (1:numq)');
Hpl = text(q(:,1)+0.2, q(:,2)+0.2, vxlabels, 'FontWeight', ...
     'bold', 'HorizontalAlignment','center', ...
     'BackgroundColor','none');

hold off
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Performing a nearest-neighbor search in 3-D is a direct extension of the 2-D example
based on delaunayTriangulation.

For 4-D and higher, use the delaunayn and dsearchn functions as illustrated in the
following example:

Create a random sample of points in 4-D and triangulate the points using delaunayn:

X = 20*rand(50,4) -10;
tri = delaunayn(X);

Create some query points and for each query point find the index of its corresponding
nearest-neighbor in X using the dsearchn function:

q = rand(5,4);
xi = dsearchn(X,tri, q)

The nearestNeighbor method and the dsearchn function allow the Euclidean distance
between the query point and its nearest-neighbor to be returned as an optional
argument. In the 4-D example, you can compute the distances, dnn, as follows:

[xi,dnn] = dsearchn(X,tri, q)

Point-Location Search
A point-location search is a triangulation search algorithm that locates the simplex
(triangle, tetrahedron, and so on) enclosing a query point. As in the case of the nearest-
neighbor search, there are a few approaches to performing a point-location search in
MATLAB, depending on the dimensionality of the problem:

• For 2-D and 3-D, use the class-based approach with the pointLocation method
provided by the triangulation class and inherited by the
delaunayTriangulation class.

• For 4-D and higher, use the delaunayn function to construct the triangulation and
the complementary tsearchn function to perform the point-location search. Although
supporting 2-D and 3-D, these N-D functions are not as general and efficient as the
triangulation search methods.

This example shows how to use the delaunayTriangulation class to perform a point
location search in 2-D.

Begin with a set of 2-D points.

7 Computational Geometry

7-54



X = [3.5 8.2; 6.8 8.3; 1.3 6.5; 3.5 6.3; 5.8 6.2; ...
     8.3 6.5; 1 4; 2.7 4.3; 5 4.5; 7 3.5; 8.7 4.2; ...
     1.5 2.1; 4.1 1.1; 7 1.5; 8.5 2.75];

Create the triangulation and plot it showing the triangle ID labels at the incenters of the
triangles.

 dt = delaunayTriangulation(X);
triplot(dt);

hold on
ic = incenter(dt);
numtri = size(dt,1);
trilabels = arrayfun(@(x) {sprintf('T%d', x)}, (1:numtri)');
Htl = text(ic(:,1), ic(:,2), trilabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment', 'center', 'Color', ...
      'blue');
hold off
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Now create some query points and add them to the plot. Then find the index of the
corresponding enclosing triangles using the pointLocation method.

q = [5.9344    6.2363;
    2.2143    2.1910;
    7.0948    3.6615;
    7.6040    2.2770;
    6.0724    2.5828;
    6.5464    6.9407;
    6.4588    6.1690;
    4.3534    3.9026;
    5.9329    7.7013;
    3.0271    2.2067];
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hold on; 
plot(q(:,1),q(:,2),'*r'); 
vxlabels = arrayfun(@(n) {sprintf('q%d', n)}, (1:10)');
Hpl = text(q(:,1)+0.2, q(:,2)+0.2, vxlabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment','center', ... 
      'BackgroundColor', 'none');
hold off

ti = pointLocation(dt,q);

Performing a point-location search in 3-D is a direct extension of performing a point-
location search in 2-D with delaunayTriangulation.
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For 4-D and higher, use the delaunayn and tsearchn functions as illustrated in the
following example:

Create a random sample of points in 4-D and triangulate them using delaunayn:

X = 20*rand(50,4) -10;
tri = delaunayn(X);

Create some query points and find the index of the corresponding enclosing simplices
using the tsearchn function:

q = rand(5,4);
ti = tsearchn(X,tri,q)

The pointLocation method and the tsearchn function allow the corresponding
barycentric coordinates to be returned as an optional argument. In the 4-D example, you
can compute the barycentric coordinates as follows:

[ti,bc] = tsearchn(X,tri,q)

The barycentric coordinates are useful for performing linear interpolation. These
coordinates provide you with weights that you can use to scale the values at each vertex
of the enclosing simplex. See “Interpolating Scattered Data” on page 8-54 for further
details.
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Voronoi Diagrams

In this section...
“Plot 2-D Voronoi Diagram and Delaunay Triangulation” on page 7-59
“Computing the Voronoi Diagram” on page 7-63

The Voronoi diagram of a discrete set of points X decomposes the space around each point
X(i) into a region of influence R{i}. This decomposition has the property that an arbitrary
point P within the region R{i} is closer to point i than any other point. The region of
influence is called a Voronoi region and the collection of all the Voronoi regions is the
Voronoi diagram.

The Voronoi diagram is an N-D geometric construct, but most practical applications are
in 2-D and 3-D space. The properties of the Voronoi diagram are best understood using
an example.

Plot 2-D Voronoi Diagram and Delaunay Triangulation

This example shows the Voronoi diagram and the Delaunay triangulation on the same 2-
D plot.

Use the 2-D voronoi function to plot the voronoi diagram for a set of points.

figure()
X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; ...
      0.8 1.2; 3.3 1.5; -4.0 -1.0;-2.3 -0.7; ...
      0 -0.5; 2.0 -1.5; 3.7 -0.8; -3.5 -2.9; ...
     -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
 
voronoi(X(:,1),X(:,2))

% Assign labels to the points.
nump = size(X,1);
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)');
hold on
Hpl = text(X(:,1), X(:,2), plabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment','center', ...
      'BackgroundColor', 'none');

% Add a query point, P, at (0, -1.5).
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P = [0 -1];
plot(P(1),P(2), '*r');
text(P(1), P(2), 'P', 'FontWeight', 'bold', ...
     'HorizontalAlignment','center', ...
     'BackgroundColor', 'none');
hold off

Observe that P is closer to X9 than to any other point in X, which is true for any point P
within the region that bounds X9.

The Voronoi diagram of a set of points X is closely related to the Delaunay triangulation
of X. To see this relationship, construct a Delaunay triangulation of the point set X and
superimpose the triangulation plot on the Voronoi diagram.
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dt = delaunayTriangulation(X);
hold on
triplot(dt,'-r');
hold off

From the plot you can see that the Voronoi region associated with the point X9 is defined
by the perpendicular bisectors of the Delaunay edges attached to X9. Also, the vertices of
the Voronoi edges are located at the circumcenters of the Delaunay triangles. You can
illustrate these associations by plotting the circumcenter of triangle {|X9|,|X4|,|X8|}.

To find the index of this triangle, query the triangulation. The triangle contains the
location (-1, 0).

tidx = pointLocation(dt,-1,0);
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Now, find the circumcenter of this triangle and plot it in green.
cc = circumcenter(dt,tidx);
hold on
plot(cc(1),cc(2),'*g');
hold off

The Delaunay triangulation and Voronoi diagram are geometric duals of each other. You
can compute the Voronoi diagram from the Delaunay triangulation and vice versa.

Observe that the Voronoi regions associated with points on the convex hull are
unbounded (for example, the Voronoi region associated with X13). The edges in this
region "end" at infinity. The Voronoi edges that bisect Delaunay edges (X13, X12) and
(X13, X14) extend to infinity. While the Voronoi diagram provides a nearest-neighbor
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decomposition of the space around each point in the set, it does not directly support
nearest-neighbor queries. However, the geometric constructions used to compute the
Voronoi diagram are also used to perform nearest-neighbor searches.

Computing the Voronoi Diagram

This example shows how to compute a 2–D and 3–D Voronoi diagram.

MATLAB provides functions to plot the Voronoi diagram in 2-D and to compute the
topology of the Voronoi diagram in N-D. In practice, Voronoi computation is not practical
in dimensions beyond 6-D for moderate to large data sets, due to the exponential growth
in required memory.

The voronoi plot function plots the Voronoi diagram for a set of points in 2-D space. In
MATLAB there are two ways to compute the topology of the Voronoi diagram of a point
set:

• Using the MATLAB function voronoin
• Using the delaunayTriangulation method, voronoiDiagram.

The voronoin function supports the computation of the Voronoi topology for discrete
points in N-D (N ≥ 2). The voronoiDiagram method supports computation of the
Voronoi topology for discrete points 2-D or 3-D.

The voronoiDiagram method is recommended for 2-D or 3-D topology computations as
it is more robust and gives better performance for large data sets. This method supports
incremental insertion and removal of points and complementary queries, such as
nearest-neighbor point search.

The voronoin function and the voronoiDiagram method represent the topology of the
Voronoi diagram using a matrix format. See “Triangulation Matrix Format” on page 7-4
for further details on this data structure.

Given a set of points, X, obtain the topology of the Voronoi diagram as follows:

• Using the voronoin function

[V,R] = voronoin(X)

• Using the voronoiDiagram method
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dt = delaunayTriangulation(X);

[V,R] = voronoiDiagram(dt)

V is a matrix representing the coordinates of the Voronoi vertices (the vertices are the
end points of the Voronoi edges). By convention the first vertex in V is the infinite vertex.
R is a vector cell array length size(X,1), representing the Voronoi region associated
with each point. Hence, the Voronoi region associated with the point X(i) is R{i}.

Define and plot the voronoi diagram for a set of points

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
[VX,VY] = voronoi(X(:,1),X(:,2));
h = plot(VX,VY,'-b',X(:,1),X(:,2),'.r');
xlim([-4,4])
ylim([-4,4])

% Assign labels to the points X.
nump = size(X,1);
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)');
hold on
Hpl = text(X(:,1), X(:,2)+0.2, plabels, 'color', 'r', ...
      'FontWeight', 'bold', 'HorizontalAlignment',...
      'center', 'BackgroundColor', 'none');
  
% Compute the Voronoi diagram.
dt = delaunayTriangulation(X);
[V,R] = voronoiDiagram(dt);

% Assign labels to the Voronoi vertices V.
% By convention the first vertex is at infinity.
numv = size(V,1);
vlabels = arrayfun(@(n) {sprintf('V%d', n)}, (2:numv)');
hold on
Hpl = text(V(2:end,1), V(2:end,2)+.2, vlabels, ...
      'FontWeight', 'bold', 'HorizontalAlignment',...
      'center', 'BackgroundColor', 'none');
hold off
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R{9} gives the indices of the Voronoi vertices associated with the point site X9.

R{9}

ans = 

     5     7    17    12     9

The indices of the Voronoi vertices are the indices with respect to the V array.

Similarly, R{4} gives the indices of the Voronoi vertices associated with the point site X4.

R{4}
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ans = 

     5     9    11     8     6

In 3-D a Voronoi region is a convex polyhedron, the syntax for creating the Voronoi
diagram is similar. However the geometry of the Voronoi region is more complex. The
following example illustrates the creation of a 3-D Voronoi diagram and the plotting of a
single region.

Create a sample of 25 points in 3-D space and compute the topology of the Voronoi
diagram for this point set.

X = -3 + 6.*gallery('uniformdata',[25 3],0);
dt = delaunayTriangulation(X);

Compute the topology of the Voronoi diagram.

[V,R] = voronoiDiagram(dt);

Find the point closest to the origin and plot the Voronoi region associated with this point.

tid = nearestNeighbor(dt,0,0,0);
XR10 = V(R{tid},:);
K = convhull(XR10);
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(K, XR10(:,1) ,XR10(:,2) ,XR10(:,3) , ...
        'FaceColor', defaultFaceColor, 'FaceAlpha',0.8)
title('3-D Voronoi Region')
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See Also

More About
• “Spatial Searching” on page 7-50
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Types of Region Boundaries
In this section...
“Convex Hulls vs. Nonconvex Polygons” on page 7-68
“Alpha Shapes” on page 7-72

Convex Hulls vs. Nonconvex Polygons

The convex hull of a set of points in N-D space is the smallest convex region enclosing all
points in the set. If you think of a 2-D set of points as pegs in a peg board, the convex hull
of that set would be formed by taking an elastic band and using it to enclose all the pegs.

x = gallery('uniformdata',20,1,20);
y = gallery('uniformdata',20,1,30);
plot(x,y,'r.','MarkerSize',10)
hold on
k = convhull(x,y);
plot(x(k),y(k))
title('The Convex Hull of a Set of Points')
hold off
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A convex polygon is a polygon that does not have concave vertices, for example:

x = gallery('uniformdata',20,1,30);
y = gallery('uniformdata',20,1,40);
k = convhull(x,y);
plot(x(k),y(k))
title('Convex Polygon')
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You can also create a boundary of a point set that is nonconvex. If you "vacuum pack" the
convex hull from above, you can enclose all of the points in a nonconvex polygon with
concave vertices:

k = boundary(x,y,0.9);
plot(x(k),y(k))
title('Nonconvex Polygon')
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The convex hull has numerous applications. You can compute the upper bound on the
area bounded by a discrete point set in the plane from the convex hull of the set. The
convex hull simplifies the representation of more complex polygons or polyhedra. For
instance, to determine whether two nonconvex bodies intersect, you could apply a series
of fast rejection steps to avoid the penalty of a full intersection analysis:

• Check if the axis-aligned bounding boxes around each body intersect.
• If the bounding boxes intersect, you can compute the convex hull of each body and

check intersection of the hulls.

If the convex hulls did not intersect, this would avoid the expense of a more
comprehensive intersection test.
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While convex hulls and nonconvex polygons are convenient ways to represent relatively
simple boundaries, they are in fact specific instances of a more general geometric
construct called the alpha shape.

Alpha Shapes

The alpha shape of a set of points is a generalization of the convex hull and a subgraph of
the Delaunay triangulation. That is, the convex hull is just one type of alpha shape, and
the full family of alpha shapes can be derived from the Delaunay triangulation of a given
point set.

x = gallery('uniformdata',20,1,10);
y = gallery('uniformdata',20,1,20);
plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y,100);
plot(shp)
title('Convex Alpha Shape')
hold off
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Unlike the convex hull, alpha shapes have a parameter that controls the level of detail,
or how tightly the boundary fits around the point set. The parameter is called alpha or
the alpha radius. Varying the alpha radius from 0 to Inf produces a set of different
alpha shapes unique for that point set.

plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y,.5);
plot(shp)
title('Nonconvex Alpha Shape')
hold off
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Varying the alpha radius can sometimes result in an alpha shape with multiple regions,
which might or might not contain holes. However, the alphaShape function in
MATLAB® always returns regularized alpha shapes, which prevents isolated or dangling
points, edges, or faces.

plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y);
plot(shp)
title('Alpha Shape with Multiple Regions')
hold off
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See Also
alphaShape | convhull

More About
• “Using the delaunayTriangulation Class” on page 7-24
• “Triangulation Matrix Format” on page 7-4
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Computing the Convex Hull

In this section...
“Computing the Convex Hull Using convhull and convhulln” on page 7-76
“Convex Hull Computation Using the delaunayTriangulation Class” on page 7-81
“Convex Hull Computation Using alphaShape” on page 7-84

MATLAB provides several ways to compute the convex hull:

• Using the MATLAB functions convhull and convhulln
• Using the convexHull method provided by the delaunayTriangulation class
• Using the alphaShape function with an alpha radius of Inf.

The convhull function supports the computation of convex hulls in 2-D and 3-D. The
convhulln function supports the computation of convex hulls in N-D (N ≥ 2). The
convhull function is recommended for 2-D or 3-D computations due to better robustness
and performance.

The delaunayTriangulation class supports 2-D or 3-D computation of the convex hull
from the Delaunay triangulation. This computation is not as efficient as the dedicated
convhull and convhulln functions. However, if you have a delaunayTriangulation
of a point set and require the convex hull, the convexHull method can compute the
convex hull more efficiently from the existing triangulation.

The alphaShape function also supports the 2-D or 3-D computation of the convex hull by
setting the alpha radius input parameter to Inf. Like delaunayTriangulation,
however, computing the convex hull using alphaShape is less efficient than using
convhull or convhulln directly. The exception is when you are working with a
previously created alpha shape object.

Computing the Convex Hull Using convhull and convhulln

The convhull and convhulln functions take a set of points and output the indices of
the points that lie on the boundary of the convex hull. The point index-based
representation of the convex hull supports plotting and convenient data access. The
following examples illustrate the computation and representation of the convex hull.
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The first example uses a 2-D point set from the seamount dataset as input to the
convhull function.

Load the data.

load seamount

Compute the convex hull of the point set.

K = convhull(x,y);

K represents the indices of the points arranged in a counter-clockwise cycle around the
convex hull.

Plot the data and its convex hull.

plot(x,y,'.','markersize',12)
xlabel('Longitude')
ylabel('Latitude')
hold on

plot(x(K),y(K),'r')
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Add point labels to the points on the convex hull to observe the structure of K.

[K,A] = convhull(x,y);

convhull can compute the convex hull of both 2-D and 3-D point sets. You can reuse the
seamount dataset to illustrate the computation of the 3-D convex hull.

Include the seamount z-coordinate data elevations.

close(gcf)
K = convhull(x,y,z);
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In 3-D the boundary of the convex hull, K, is represented by a triangulation. This is a set
of triangular facets in matrix format that is indexed with respect to the point array. Each
row of the matrix K represents a triangle.

Since the boundary of the convex hull is represented as a triangulation, you can use the
triangulation plotting function trisurf.

trisurf(K,x,y,z,'Facecolor','cyan')

The volume bounded by the 3-D convex hull can optionally be returned by convhull, the
syntax is as follows.

[K,V] = convhull(x,y,z);
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The convhull function also provides the option of simplifying the representation of the
convex hull by removing vertices that do not contribute to the area or volume. For
example, if boundary facets of the convex hull are collinear or coplanar, you can merge
them to give a more concise representation. The following example illustrates use of this
option.

[x,y,z] = meshgrid(-2:1:2,-2:1:2,-2:1:2);
x = x(:);
y = y(:); 
z = z(:);

K1 = convhull(x,y,z);
subplot(1,2,1)
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(K1,x,y,z,'Facecolor',defaultFaceColor)
axis equal
title(sprintf('Convex hull with simplify\nset to false'))

K2 = convhull(x,y,z,'simplify',true);
subplot(1,2,2)
trisurf(K2,x,y,z,'Facecolor',defaultFaceColor)
axis equal
title(sprintf('Convex hull with simplify\nset to true'))
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MATLAB provides the convhulln function to support the computation of convex hulls
and hypervolumes in higher dimensions. Though convhulln supports N-D, problems in
more than 10 dimensions present challenges due to the rapidly growing memory
requirements.

The convhull function is superior to convhulln in 2-D and 3-D as it is more robust and
gives better performance.

Convex Hull Computation Using the delaunayTriangulation Class
This example shows the relationship between a Delaunay triangulation of a set of points
in 2-D and the convex hull of that set of points.
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The delaunayTriangulation class supports computation of Delaunay triangulations
in 2-D and 3-D space. This class also provides a convexHull method to derive the
convex hull from the triangulation.

Create a Delaunay triangulation of a set of points in 2-D.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];

dt = delaunayTriangulation(X);

Plot the triangulation and highlight the edges that are shared only by a single triangle
reveals the convex hull.

triplot(dt)

fe = freeBoundary(dt)';
hold on
plot(X(fe,1), X(fe,2), '-r', 'LineWidth',2)
hold off
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In 3-D, the facets of the triangulation that are shared only by one tetrahedron represent
the boundary of the convex hull.

The dedicated convhull function is generally more efficient than a computation based
on the convexHull method. However, the triangulation based approach is appropriate
if:

• You have a delaunayTriangulation of the point set already and the convex hull is
also required.

• You need to add or remove points from the set incrementally and need to recompute
the convex hull frequently after you have edited the points.
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Convex Hull Computation Using alphaShape

This example shows how to compute the convex hull of a 2-D point set using the
alphaShape function.

alphaShape computes a regularized alpha shape from a set of 2-D or 3-D points. You
can specify the alpha radius, which determines how tightly or loosely the alpha shape
envelops the point set. When the alpha radius is set to Inf, the resulting alpha shape is
the convux hull of the point set.

Create a set of 2-D points.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];

Compute and plot the convex hull of the point set using an alpha shape with alpha radius
equal to Inf.

shp = alphaShape(X,Inf);
plot(shp)
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Interpolation

• “Gridded and Scattered Sample Data” on page 8-2
• “Interpolating Gridded Data” on page 8-4
• “Interpolation of Multiple 1-D Value Sets” on page 8-50
• “Interpolation of 2-D Selections in 3-D Grids” on page 8-52
• “Interpolating Scattered Data” on page 8-54
• “Interpolation Using a Specific Delaunay Triangulation” on page 8-84
• “Extrapolating Scattered Data” on page 8-87
• “Normalize Data with Differing Magnitudes ” on page 8-94
• “Resample Image with Gridded Interpolation” on page 8-98
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Gridded and Scattered Sample Data
Interpolation is a method for estimating the value at a query location that lies within the
domain of a set of sample data points. A sample data set defined by locations X and
corresponding values V can be interpolated to produce a function of the form V = F(X).
This function can then be used to evaluate a query point Xq, to give Vq = F(Xq). This is a
single-valued function; for any query Xq within the domain of X it will produce a unique
value Vq. The sample data is assumed to respect this property in order to produce a
satisfactory interpolation. One other interesting characteristic is that the interpolating
function passes through the data points. This is an important distinction between
interpolation and curve/surface fitting. In fitting, the function does not necessarily pass
through the sample data points.

The computation of the value Vq is generally based on the data points in the
neighborhood of the query point Xq. There are numerous approaches to performing
interpolation. In MATLAB interpolation is classified into two categories depending on
the structure of the sample data. The sample data may be ordered in a axis-aligned grid
or they may be scattered. In the case of a gridded distribution of sample points, you can
leverage the organized structure of the data to efficiently find the sample points in the
neighborhood of the query. Interpolation of scattered data on the other hand requires a
triangulation of the data points, and this introduces an additional level of computation.

The two approaches to interpolation are covered in the following sections:

• The “Interpolating Gridded Data” on page 8-4 section covers 1-D interpolation, and
the N-D (N ≥ 2) interpolation of sample data in axis-aligned grid format:

• The “Interpolating Scattered Data” on page 8-54 section covers the N-D (N ≥ 2)
interpolation of scattered data:
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Interpolating Gridded Data
In this section...
“Gridded Data Representation” on page 8-4
“Grid-Based Interpolation” on page 8-18
“Interpolation with the interp Family of Functions” on page 8-26
“Interpolation with the griddedInterpolant Class” on page 8-38

Gridded Data Representation
• “Grid Representation” on page 8-4
• “Types of Grid Representations” on page 8-13
• “Grid Approximation Techniques” on page 8-15

Grid Representation

This example shows how to create a 2-D grid using meshgrid and ndgrid.

In MATLAB®, gridded data means data ordered in a grid. You can understand ordered
data by thinking about how MATLAB stores data in matrices.

Define some data.

A = gallery('uniformdata',[3 5],0)

A = 

    0.9501    0.4860    0.4565    0.4447    0.9218
    0.2311    0.8913    0.0185    0.6154    0.7382
    0.6068    0.7621    0.8214    0.7919    0.1763

MATLAB stores the data in a matrix. You can think of A as a set of places for the
elements that are ordered by the indices of the matrix. The linear indices of A are:
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Any element in the matrix can be retrieved by indexing, that is, by asking for the
element at that place in the matrix. The ith element in A is retrieved by A(i).

Retrieve the 7th element in A.

A(7)

ans = 0.4565

For an m-by-n matrix, you can find the column elements adjacent to the ith element by
offsetting i by 1. To find the row elements adjacent to the ith element, offset i by m.

Retrieve the column elements adjacent to A(7).

A(6),A(8)

ans = 0.7621

ans = 0.0185

MATLAB uses a similar idea for creating data grids. A grid is not just a set of points that
meet certain geometric properties. Rather, a gridded data set relies on an ordered
relationship among the points in the grid. The adjacency information readily available in
the grid structure is very useful for many applications and particularly grid-based
interpolation.

MATLAB provides two functions for creating grids:

• meshgrid creates 2-D and 3-D grids that are Cartesian axis aligned. To create a 2-D
grid, the syntax is [X,Y] = meshgrid(xgv, ygv) where xgv is a vector of length
m, and ygv is a vector of length n. meshgrid replicates xgv to form the n-by-m matrix
X, and it replicates ygv to form another n-by-m matrix Y. X and Y represent the
coordinates of the grid points. The rows of X are aligned with the horizontal X-axis,
and the columns of Y are aligned with the negative Y-axis.

• ndgrid creates N-D grids that are array space aligned. In array space the axes are
row, column, page, etc. The calling syntax is [X1, X2, X3,...,Xn] =
ndgrid(x1gv, x2gv, x3gv,...,xngv) where x1gv,x2gv,x3gv,...,xngv are

 Interpolating Gridded Data

8-5



vectors that span the grid in each dimension. X1,X2,X3,...,Xn are output arrays
that can be used for evaluating functions of multiple variables and for
multidimensional interpolation.

Use meshgrid to create a 2-D axis aligned grid from two vectors, xgv and ygv.

xgv = [1 2 3];
ygv = [1 2 3 4 5];
[X,Y] = meshgrid(xgv, ygv)

X = 

     1     2     3
     1     2     3
     1     2     3
     1     2     3
     1     2     3

Y = 

     1     1     1
     2     2     2
     3     3     3
     4     4     4
     5     5     5

Now use ndgrid to create a 2-D space aligned grid from the same two vectors, xgv and
ygv.

[X1,X2] = ndgrid(xgv,ygv)

X1 = 

     1     1     1     1     1
     2     2     2     2     2
     3     3     3     3     3

X2 = 

     1     2     3     4     5
     1     2     3     4     5
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     1     2     3     4     5

Notice that ndgrid's X1 is the transpose of meshgrid's X. The same is true for X2 and Y.

For a given set of inputs, the meshgrid and ndgrid functions will produce grids with
exactly the same coordinates. The only difference between their outputs is the format of
the coordinate arrays. Plot both outputs and see that they are the same.

figure()
[X1_ndgrid,X2_ndgrid] = ndgrid(1:3,1:5);
Z = zeros(3,5);
mesh(X1_ndgrid,X2_ndgrid,Z,'EdgeColor','black')
axis equal;

% Set the axis labeling and title
h1 = gca;
h1.XTick = [1 2 3];
h1.YTick = [1 2 3 4 5];
xlabel('ndgrid Output')
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figure()
[X_meshgrid,Y_meshgrid] = meshgrid(1:3, 1:5);
mesh(X_meshgrid,Y_meshgrid,Z','EdgeColor','black')
axis equal;

% Set the axis labeling and title
h2 = gca;
h2.XTick = [1 2 3];
h2.YTick = [1 2 3 4 5];
xlabel('meshgrid Output')

8 Interpolation

8-8



Depending on how you intend to use your grid, you may prefer one format or the other.
Some functions in MATLAB might require your data to have a meshgrid format while
others might require an ndgrid format.
Converting Between Grid Formats

To convert a 2-D grid output from meshgrid to the ndgrid format, transpose the
coordinate matrices:

[X_meshgrid,Y_meshgrid] = meshgrid(1:3, 1:5);
[X1_ndgrid,X2_ndgrid] = ndgrid(1:3,1:5);

isequal(X_meshgrid',X1_ndgrid)
ans =
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     1
isequal(Y_meshgrid',X2_ndgrid)
ans =
     1

You can also use the permute function.

isequal(permute(X_meshgrid,[2 1]),X1_ndgrid)
ans =
     1

To convert a 3-D meshgrid to ndgrid, transpose each page of the coordinate array. For
a given array my_array, permute(my_array, [2 1 3]) interchanges the rows and
columns, and the net effect is the transposition of every page:

[X_meshgrid,Y_meshgrid,Z_meshgrid] = meshgrid(1:3, 1:5, [1 2]);
[X1_ndgrid,X2_ndgrid,X3_ndgrid] = ndgrid(1:3,1:5, [1 2]);

isequal(permute(X_meshgrid,[2 1 3]),X1_ndgrid)
ans =
     1

isequal(permute(Y_meshgrid,[2 1 3]),X2_ndgrid)
ans =
     1

isequal(permute(Z_meshgrid,[2 1 3]),X3_ndgrid)
ans =
     1

Grid Vectors

The inputs that you pass to the grid functions are called grid vectors. The grid vectors
implicitly define the grid. Consider two vectors, x1gv = (1:3) and x2gv = (1:5). You
can think of these vectors as a set of coordinates in the x1 direction and a set of
coordinates in the x2 direction, like so:
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Each arrow points to a location. You can use these two vectors to define a set of grid
points, where one set of coordinates is given by x1gv and the other set of coordinates is
given by x2gv. When the grid vectors are replicated they form two coordinate arrays that
make up the full grid:

Monotonic and Nonmonotonic Grids

Your input grid vectors may be monotonic or nonmonotonic. Monotonic vectors contain
values that either increase in that dimension or decrease in that dimension. Conversely,
nonmonotonic vectors contain values that fluctuate. If the input grid vector is
nonmonotonic, such as [2 4 6 8 3 1], ndgrid outputs the following:

[X1,X2] = ndgrid([2 4 6 3 1])
X1 =
     2     2     2     2     2
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     4     4     4     4     4
     6     6     6     6     6
     3     3     3     3     3
     1     1     1     1     1

X2 =
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1

Your grid vectors should be monotonic if you intend to pass the grid to other MATLAB
functions.
Uniform and Nonuniform Grids

A uniform grid is one in which all neighboring points in a given dimension have equal
spacing. For example, [X1, X2] = ndgrid([1 3 5 9],[11 13 15]) is a uniform
with a spacing of 2 units in each dimension.

It is not necessary for the spacing in a uniform grid to be equal in all dimensions. For
example, [X1, X2] = ndgrid([1 2 3 4],[11 13 15]) is considered uniform even
though the spacing in X1 and X2 are different.

A grid whose spacing varies within any dimension is a nonuniform grid. For example,
[X1, X2] = ndgrid([1 5 6 9],[11 13 15]) creates a nonuniform grid because the
spacing varies along the first dimension.

Uniform Uniform Nonuniform
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Types of Grid Representations

MATLAB allows you to represent a grid in one of three representations: full grid,
compact grid, or default grid. The compact grid and default grid are used primarily for
convenience and improved efficiency.

Full Grid

A full grid is one in which the points are explicitly defined. The outputs of ndgrid and
meshgrid define a full grid.

Compact Grid

The explicit definition of every point in a grid is expensive in terms of memory. The
compact grid representation is a way to dispense with the memory overhead of a full
grid. The compact grid representation stores just the grid vectors instead of the full grid.
(For information on how the griddedInterpolant class uses the compact grid
representation, see “Interpolation with the griddedInterpolant Class” on page 8-38.)

Default Grid

For many cases, when you are analyzing data, you care about both the distances between
points in the grid and their value. For example, a data set might represent rainfall at
specific points in a geographic area. In this case, you would care about the value at each
grid point and the distance between a point and its neighbor. In other cases, you might
care only about the value for a given point and not about the relative distances. For
example, you could be working with input data from an MRI scan where the distance
between the points is completely uniform. In this case, you would care about the values
of the points, but you can be certain of a completely uniform grid. In this case, the default
grid representation is useful. The default grid representation stores the value at a grid
point explicitly and creates grid point coordinates implicitly.

This example shows how you can use the default grid instead of the full grid to produce a
plot.

Create a grid and a function that you want to plot.

[X,Y] = meshgrid(11:15,11:16);
Z = X.^2 + Y.^2;

Use the full grid that you created with meshgrid by using X and Y.
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figure
surf(X,Y,Z)
title('Full Grid')

In contrast, have MATLAB create a default grid instead of using the full grid.

figure
surf(Z)
title('Default Grid')
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Notice the difference in the scaling of the axes. When you plot the full grid the X- and Y-
axis have ranges of 11 to 15 and 10 to 16 respectively. When you plot the default grid the
X- and Y-axis have ranges of 1 to m and 1 to n, where Z is m-by-n.

Grid Approximation Techniques

In some cases, you may need to approximate a grid for your data. An approximate grid
can be idealized by a standard MATLAB grid by choosing an appropriate set of grid
vectors. For example, a grid can have points that lie along curved lines. A data set like
this might occur if your data is longitude and latitude based:
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In this case, although the input data cannot be gridded directly, you can approximate
straight grid lines at appropriate intervals:

You can also use the default grid on page 8-13.
Degenerate Grid

A degenerate grid is a special case of grid where one or more dimensions of the grid are
singletons. A singleton dimension can be internal, as in 7:7 in this example:

[X1,X2,X3] = ndgrid(1:2:10,7:7,1:3:15);

or a singleton dimension can be trailing:

[X1,X2,X3] = ndgrid(1:2:10,1:3:15,7:7);

You can create a degenerate grid if you are trying to take a slice of a larger data set. For
example, you may want to analyze just a slice of a 3-D MRI scan. In this case, you will
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need a slice of data from a multidimensional grid, such as the dotted slice in the
following figure:

If you use indexing to extract the desired data, the resultant grid is degenerate in the X3
dimension:

[X1,X2,X3] = ndgrid(1:3);

X1_slice = X1(:,:,2)
X1_slice =
     1     1     1
     2     2     2
     3     3     3

X2_slice = X2(:,:,2)
X2_slice =
     1     2     3
     1     2     3
     1     2     3

X3_slice = X3(:,:,2)
X3_slice =
     2     2     2
     2     2     2
     2     2     2

The concept of data gridding is very important for understanding the ways in which
MATLAB does grid-based interpolation.

 Interpolating Gridded Data

8-17



Grid-Based Interpolation
• “Benefits of Using Grid-Based Interpolation” on page 8-18
• “Interpolation versus Fit” on page 8-21
• “Interpolation Methods” on page 8-21

In grid-based interpolation, the data to be interpolated is represented by an ordered grid.
For example, an arrangement of temperature measurements over a rectangular flat
surface at 1-cm intervals from top-to-bottom vertically and left-to-right horizontally is
considered 2-D gridded data. Grid-based interpolation provides an efficient way to
approximate the temperature at any location between the grid points.

Benefits of Using Grid-Based Interpolation

Grid-based interpolation provides significant savings in computational overhead because
the gridded structure allows MATLAB to locate a query point and its adjacent neighbors
very quickly. To understand how this works, consider the following points on a 1-D grid:

The lines connecting adjacent points represent the cells of the grid. The first cell occurs
between x = 1 and x = 3, the second occurs between x = 3 and x = 5, and so on.
Each number represents a coordinate in the grid. If you want to query the grid at x = 6,
you would have to use interpolation because 6 is not explicitly defined in the grid. Since
this grid has a uniform spacing of 2, you can narrow down the location of the query point
with a single integer division (6/2 = 3). This tells you that the point is in the 3rd cell of
the grid. Locating a cell in a 2-D grid involves performing this operation once in each
dimension. This operation is called a fast lookup, and MATLAB uses this technique only
when the data is arranged in a uniform grid.

This fast lookup efficiently locates the cell containing a query point Xq. A binary search
proceeds as follows:

1 Locate the center grid point.
2 Compare Xq to the point at the center of the grid.
3 If Xq is less than the point found at the center, eliminate all of the grid points

greater than central point from the search. Similarly, if Xq is greater than the one
found at the center, we eliminate all of the grid points that are less than the central
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point. Note that by doing this, we have reduced the number of points we must search
by half.

4 Find the center of the remaining grid points and repeat from Step 2 until you are left
with one grid point on either side of your query. These two points mark the boundary
of the cell that contains Xq.

To illustrate the power of binary searches, consider the following example. Before the
advent of electronic credit card authorizations, the only protection merchants had
against fraudulent credit card purchases was to compare the account number on each
customer's credit card against a list of "bad" account numbers. These lists were bound
booklets with tens of thousands of card numbers arranged in ascending order. How many
comparisons would be required to search through a list of 10,000 account numbers for
one sale? It turns out that for any list of n ordered items, the maximum number of
comparisons will be no more than the number of times you can divide the list in half, or
log2(n). Therefore, the credit card search will take no more than log2(10e3) or about
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13 comparisons. That's a pretty impressive if you consider how many comparisons it
would take to perform a sequential search.

By contrast, consider a problem with a scattered data set.

x = rand(20,1);
y = rand(20,1);
scatter(x,y)

To find the points in close proximity to a query point would require many more
operations. If your data can be approximated as a grid, grid-based interpolation will
provide substantial savings in computation and memory usage.
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If your data is scattered, you can use the tools detailed in “Interpolating Scattered Data”
on page 8-54.

Interpolation versus Fit

The interpolation methods available in MATLAB create interpolating functions that pass
though the sample data points. If you were to query the interpolation function at a
sample location, you would get back the value at that sample data point. By contrast,
curve and surface fitting algorithms do not necessarily pass through the sample data
points.

Interpolation Methods

Grid-based interpolation offers several different methods for interpolation. When
choosing an interpolation method, keep in mind that some require more memory or
longer computation time than others. However, you may need to trade off these resources
to achieve the desired smoothness in the result. The following table provides an overview
of the benefits, trade-offs, and requirements for each method.

Method Description Continuity Memory Usage and
Performance

Requirements

Nearest Neighbor The interpolated
value at a query
point is the value
at the nearest
sample grid point.

Discontinuous • Modest
memory
requirements

• Fastest
computation
time

• Requires 2 grid
points in each
dimension.

Next Neighbor The interpolated
value at a query
point is the value
at the next sample
grid point.

Discontinuous Same memory
requirements and
computation time
as nearest
neighbor.

• Available for
1D
interpolation
only.

• Requires at
least 2 grid
points.
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Method Description Continuity Memory Usage and
Performance

Requirements

Previous Neighbor The interpolated
value at a query
point is the value
at the previous
sample grid point.

Discontinuous Same memory
requirements and
computation time
as nearest
neighbor.

• Available for
1D
interpolation
only.

• Requires at
least 2 grid
points.

Linear The interpolated
value at a query
point is based on
linear
interpolation of
the values at
neighboring grid
points in each
respective
dimension.

C0 • Requires more
memory than
nearest
neighbor.

• Requires more
computation
time than
nearest
neighbor.

• Requires at
least 2 grid
points in each
dimension.

Pchip The interpolated
value at a query
point is based on a
shape-preserving
piece-wise cubic
interpolation of
the values at
neighboring grid
points.

C1 • Requires more
memory than
linear.

• Requires more
computation
time than
linear.

• Available for
1D
interpolation
only.

• Requires at
least 4 grid
points.
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Method Description Continuity Memory Usage and
Performance

Requirements

Cubic The interpolated
value at a query
point is based on
cubic interpolation
of the values at
neighboring grid
points in each
respective
dimension.

C1 • Requires more
memory than
linear.

• Requires more
computation
time than
linear.

• Grid must have
uniform
spacing,
though the
spacing in each
dimension does
not have to be
the same.

• Requires at
least 4 points
in each
dimension.

Modified Akima The interpolated
value at a query
point is based on a
piecewise function
of polynomials
with degree at
most three
evaluated using
the values of
neighboring grid
points in each
respective
dimension. The
Akima formula is
modified to avoid
overshoots.

C1 • Similar
memory
requirements
as spline.

• Requires more
computation
time than
cubic, but
typically less
than spline.

• Requires at
least 2 grid
points in each
dimension
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Method Description Continuity Memory Usage and
Performance

Requirements

Spline The interpolated
value at a query
point is based on a
cubic interpolation
of the values at
neighboring grid
points in each
respective
dimension.

C2 • Requires more
memory than
cubic.

• Requires more
computation
time than
cubic.

• Requires 4
points in each
dimension.

This figure has some visual comparisons of the different interpolation methods for 1-D
data.
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Comparison of Interpolation Methods
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MATLAB provides support for grid-based interpolation in several ways:

• The interp family of functions: interp1, interp2, interp3, and interpn.
• The griddedInterpolant class.

Both the interp family of functions and griddedInterpolant support N-D grid-based
interpolation. However, there are memory and performance benefits to using the
griddedInterpolant class over the interp functions. Moreover, the
griddedInterpolant class provides a single consistent interface for working with
gridded data in any number of dimensions.

Interpolation with the interp Family of Functions
• “The interp1 Function” on page 8-26
• “1-D Extrapolation With interp1” on page 8-27
• “The interp2 Function” on page 8-31
• “The interp3 Function” on page 8-33
• “The interpn Function” on page 8-34

The interp1 Function

This example shows how the interp1 function can be used to interpolate a set of sample
values using the 'pchip' method.

The function interp1 performs one-dimensional interpolation. Its most general form is:

Vq = interp1(X,V,Xq,method)

where X is a vector of coordinates and V is a vector containing the values at those
coordinates. Xq is a vector containing the query points at which to interpolate, and
method optionally specifies any of four interpolation methods: 'nearest', 'linear',
'pchip', or 'spline'.

Create a set of 1-D grid points X and corresponding sample values V.

X = [1 2 3 4 5];
V = [12 16 31 10 6];

Interpolate over finer intervals with 0.1 spacing.
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Xq = (1:0.1:5);
Vq = interp1(X,V,Xq,'pchip');

Plot the samples and interpolated values.
plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off

1-D Extrapolation With interp1

This example shows how to use the 'extrap' option to interpolate beyond the domain of
your sample points.
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Define the sample points and values.

X = [1 2 3 4 5];
V = [12 16 31 10 6];

Specify the query points, Xq, that extend beyond the domain of X.

Xq = (0:0.1:6);
Vq = interp1(X,V,Xq,'pchip','extrap');

Plot the results.

figure
plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off
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In an alternative approach, you can introduce additional points to gain more control over
the behavior in the extrapolated regions. For example, you can constrain the curve to
remain flat in the extrapolated region by extending the domain with repeated values.

X = [0 1 2 3 4 5 6];
V = [12 12 16 31 10 6 6];

Specify the query points, Xq, that extend further beyond the domain of X.

Xq = (-1:0.1:7);

Interpolate using 'pchip'. You can omit the 'extrap' option because it is the default
with the 'pchip', 'makima', and 'spline' methods.
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Vq = interp1(X,V,Xq,'pchip');

Plot the results.

figure
plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off

8 Interpolation

8-30



The interp2 Function

This example shows how the interp2 function can be used to interpolate the coarsely
sampled peaks function over a finer grid.

The interp2 and interp3 functions perform two and three-dimensional interpolation
respectively, and they interpolate grids in the meshgrid format. The calling syntax for
interp2 has the general form:

Vq = interp2(X,Y,V,Xq,Yq,method)

where X and Y are arrays of coordinates that define a grid in meshgrid format, and V is
an array containing the values at the grid points. Xq and Yq are arrays containing the
coordinates of the query points at which to interpolate. method optionally specifies any of
four interpolation methods: 'nearest', 'linear', 'cubic', or 'spline'.

The grid points that comprise X and Y must be monotonically increasing and should
conform to the meshgrid format.

Create a coarse grid and corresponding sample values.

[X,Y] = meshgrid(-3:1:3);
V = peaks(X,Y);

Plot the sample values.

surf(X,Y,V)
title('Sample Grid');
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Generate a finer grid for interpolation.

[Xq,Yq] = meshgrid(-3:0.25:3);

Use interp2 to interpolate at the query points.

Vq = interp2(X,Y,V,Xq,Yq,'linear');

Plot the results.

surf(Xq,Yq,Vq);
title('Refined Grid');
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The interp3 Function

This example shows how to use interp3 to interpolate a 3-D function at a single query
point and compare it to the value generated by an analytic expression.

interp3 works in the same way as interp2 except that it takes two additional
arguments: one for the third dimension in the sample grid and the other for the third
dimension in the query points,

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq,method).

As is the case with interp2, the grid points you supply to interp3 must be
monotonically increasing and should conform to the meshgrid format.
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Define a function that generates values for X, Y, and Z input.

generatedvalues = @(X,Y,Z)(X.^2 + Y.^3 + Z.^4);

Create the sample data.

[X,Y,Z] = meshgrid((-5:.25:5));
V = generatedvalues(X,Y,Z);

Interpolate at a specific query point.

Vq = interp3(X,Y,Z,V,2.35,1.76,0.23,'cubic')

Vq = 10.9765

Compare Vq to the value generated by the analytic expression.

V_actual = generatedvalues(2.35,1.76,0.23)

V_actual = 10.9771

The interpn Function

This example shows how the interpn function can be used to interpolate a coarsely
sampled function over a finer grid using the 'cubic' method.

The function interpn performs n-dimensional interpolation on grids that are in the
ndgrid format. Its most general form is:

Vq = interpn(X1,X2,X3,...Xn,V,Y1,Y2,Y3,...,Yn,method)

where X1,X2,X3,...,Xn are arrays of coordinates that define a grid in ndgrid format,
and V is an array containing the values at the grid points. Y1,Y2,Y3,...,Yn are arrays
containing the coordinates of the query points at which to interpolate. method optionally
specifies any of four interpolation methods: 'nearest', 'linear', 'cubic', or
'spline'.

The grid points that comprise X1,X2,X3,...Xn must be monotonically increasing and
should conform to the ndgrid format.

Create a set of grid points and corresponding sample values.
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[X1,X2] = ndgrid((-5:1:5));
R = sqrt(X1.^2 + X2.^2)+ eps;
V = sin(R)./(R);

Plot the sample values.

mesh(X1,X2,V)
title('Sample Grid');

Create a finer grid for interpolation.

[Y1,Y2] = ndgrid((-5:.5:5));

Interpolate over the finer grid and plot the results.
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Vq = interpn(X1,X2,V,Y1,Y2,'cubic');
mesh(Y1,Y2,Vq)
title('Refined Grid');

interpn has an alternate syntax: Vq = interpn(V,ntimes,method) that allows you
to interpolate over a grid that is an integer number of times finer than the sample grid.
In the previous code, Y1 and Y2 queried the interpolant over a grid that contained one
extra point between each of the samples. The following code demonstrates how you can
achieve the same result with ntimes=1.

Interpolate over a finer grid using ntimes=1.

Vq = interpn(V,1,'cubic');
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Plot the result.
mesh(Vq)
title('Refined Grid with NTIMES');

Notice that the plot is scaled differently than in the previous example. This is because we
called mesh and passed the values only. The mesh function used a default grid based on
the dimensions of Vq. The output values are the same in both cases.

You can also supply a nonuniform grid of query points. This can be useful if you are
interested in querying the interpolant at a higher resolution in one region of the grid.
The following code shows how this can be done.

Interpolate over a biased grid.
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[Y1, Y2] = ndgrid([-5 -4 -3 -2.5 -2 -1.5 -1.25 -1 -0.75 -0.5 -0.20 0]);
Vq = interpn(X1,X2,V,Y1,Y2,'cubic');

Plot the result.

mesh(Y1,Y2,Vq);
title('Biased Grid');

Interpolation with the griddedInterpolant Class

Like the interpn function, the griddedInterpolant class provides a single interface
for grid-based interpolation in n dimensions. However griddedInterpolant offers the
following additional benefits:
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• It offers substantial performance improvements for repeated queries to the
interpolant.

• It offers additional performance improvements and savings in memory consumption
because it stores the sample points as a compact grid on page 8-13.

griddedInterpolant accepts sample data that conforms to the ndgrid format. If you
wish to create a griddedInterpolant with meshgrid data, you will need to convert
the data to the ndgrid format. See “Converting meshgrid Data to the ndgrid Format” on
page 8-40 for a demonstration of how to convert 2-D and 3-D meshgrids.

The griddedInterpolant class supports the interpolation methods on page 8-21 that
are also supported by interpn: nearest, linear, pchip, cubic, makima, and spline.
However griddedInterpolant offers greater performance with less overhead.

Constructing the Interpolant

An interpolant is a function that performs interpolation. You create the interpolant by
calling the griddedInterpolant constructor and passing the sample data: the grid and
corresponding sample values. You can also specify the interpolation method if you wish
to override the default “linear” method. The calling syntax has the following forms:

• For 1-D interpolation, you can pass x, a set of points, and v, a vector of the same
length containing the corresponding values.

F = griddedInterpolant(x,v)
• For higher dimensions, you can supply a full grid. X1,X2,...,Xn specify the grid as

a set of n n-D arrays. These arrays conform to the ndgrid format and are the same
size as the sample array V.

 F = griddedInterpolant(X1,X2,...,Xn,V)
• If you know that the distances between adjacent sample points are uniform, you can

let griddedInterpolant create a default grid by passing only the sample points V.

 F = griddedInterpolant(V)
• You can also specify the coordinates of your sample data as a compact grid. The

compact grid is represented by a set of vectors. These vectors are then packaged into a
cell array by enclosing them in curly braces; for example,{x1g,x2g,...,xng} where
vectors x1g,x2g,...,xng define the grid coordinates in each dimension.

 F = griddedInterpolant({x1g,x2g,...,xng},V)
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• You can also specify the interpolation method as a final input argument with any of
the calling syntaxes. This example specifies nearest neighbor interpolation.

 F = griddedInterpolant({x1g,x2g,x3g},V,'nearest')

Querying the Interpolant

The griddedInterpolant, F, is evaluated in the same way as you would call a function.
Your query points may be scattered or gridded, and you can pass them to F in any of the
following ways:

• You can specify an m-by-n matrix Xq, which contains m scattered points in n
dimensions. The interpolated values Vq are returned as an m-by-1 vector.

  Vq = F(Xq)
• You can also specify the query points as a series of n column vectors

x1q,x2q,...,xnq of length m. These vectors represent m points in n dimensions.
The interpolated values Vq are returned as an m-by-1 vector.

 Vq = F(x1q,x2q,...,xnq)
• You can specify the query points as a series of n n-dimensional arrays representing a

full grid. The arrays X1q,X2q,...,Xnq are all the same size and conform to the
ndgrid format. The interpolated values Vq will also be the same size.

Vq = F(X1q,X2q,...,Xnq)
• You can also specify the query points as a compact grid. x1gq,x2gq,...,xngq are

vectors that define the grid points in each dimension.

Vq = F({x1gq,x2gq,...,xngq})

For example, in 2-D:

Vq = F({(0:0.2:10),(-5:0.5:5)});

Converting meshgrid Data to the ndgrid Format

The griddedInterpolant class accepts ndgrid formatted sample data. If you want to
create a griddedInterpolant with meshgrid data, you should convert it to the
ndgrid format first.

The following example outlines the steps for converting 2-D meshgrid data to the
ndgrid format. We begin by creating the meshgrid and corresponding sample values:
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[X,Y] = meshgrid(-2:.1:2,-1:.1:1);
V=0.75*Y.^3-3*Y-2*X.^2;

To convert X, Y, and V to ndgrid format, follow these steps:

1 Transpose each array in the grid as well as the sample data.

X=X';
Y=Y';
V=V';

2 Now create the interpolant.

F = griddedInterpolant(X,Y,V);

To convert a 3-D meshgrid, use the permute function. Again, start by creating the
meshgrid and corresponding sample values:

[X,Y,Z] = meshgrid(-5:5,-3:3,-10:10);
V = X.^3 + Y.^2 + Z;

To convert X, Y, Z, and V to ndgrid format, follow these steps:

1 Use the permute function to interchange the rows and columns of each array. The
net effect will be the transpose of every page.

P = [2 1 3];
X = permute(X,P);
Y = permute(Y,P);
Z = permute(Z,P);
V = permute(V,P);

2 Now create the interpolant.

F = griddedInterpolant(X,Y,Z,V);

griddedInterpolant in One Dimension

This example shows how to create and plot a 1-D interpolant using
griddedInterpolant with a cubic interpolation method.

Create a coarse grid and sample values.

X = [1 2 3 4 5];
V = [12 6 15 9 6];
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Construct the griddedInterpolant using a cubic interpolation method.

F = griddedInterpolant(X,V,'cubic')

F = 
  griddedInterpolant with properties:

            GridVectors: {[1 2 3 4 5]}
                 Values: [12 6 15 9 6]
                 Method: 'cubic'
    ExtrapolationMethod: 'cubic'

The GridVectors property contains the compact grid specifying the coordinates of the
sample values V. The Method property specifies the interpolation method. Notice that we
specified 'cubic' when we created F. If you omit the Method argument, the default
interpolation method, linear, will be assigned to F.

You can access any of the properties of F in the same way you would access the fields in a
struct.

F.GridVectors;          % Displays the grid vectors as a cell array
F.Values;               % Displays the sample values
F.Method;               % Displays the interpolation method

Interpolate over finer intervals with 0.1 spacing.

Xq = (1:0.1:5);
Vq = F(Xq);

Plot the result.

plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','Cubic Interpolation');
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griddedInterpolant in Two Dimensions

This example shows how to create and plot a 2-D interpolant using
griddedInterpolant.

In two dimensions and higher, you can specify the sample coordinates as an ndgrid, a
compact grid, or a default grid. In this example, we'll supply an ndgrid.

Create a coarse grid and sample values.

[X,Y] = ndgrid(-1:.3:1,-2:.3:2);
V = 0.75*Y.^3 - 3*Y - 2*X.^2;

 Interpolating Gridded Data

8-43



Construct the griddedInterpolant.

F = griddedInterpolant(X,Y,V,'spline');

Interpolate over finer intervals with 0.1 spacing.
[Xq,Yq] = ndgrid(-1:.1:1,-2:.1:2);
Vq = F(Xq,Yq);

Plot the result.
figure()
surf(X,Y,V);
view(65,60)
title('Sample Data');
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figure()
surf(Xq,Yq,Vq);
view(65,60)
title('Refined with Spline');

griddedInterpolant in Three Dimensions

This example shows how to create a 3-D interpolant and evaluate over a slice plane so
you can plot the values on that plane.

Create a full grid and sample values.

 Interpolating Gridded Data

8-45



[X,Y,Z] = ndgrid((-5:2:5));
V = X.^3 + Y.^2 + Z.^2;

Construct the griddedInterpolant.

F = griddedInterpolant(X,Y,Z,V,'cubic');

Since we already created the full grid to generate our sample values, we had nothing to
lose in passing it to griddedInterpolant. In practice however, it's common to load the
sample data into MATLAB from disk. The compact grid can very beneficial in such cases
because it allows you to specify the entire grid in a form that is much more economical in
terms of memory. If we had loaded V into MATLAB instead of calculating it from a full
grid, we could have created a compact grid to conserve memory in our workspace. For
example,

gv = {(-5:2:5),(-5:2:5),(-5:2:5)};
F = griddedInterpolant(gv,V,'cubic');

Now interpolate over a plane at Z = 2 with 0.25 spacing.

[Xq,Yq,Zq] = ndgrid((-5:.25:5),(-5:.25:5),2:2);
Vq = F(Xq,Yq,Zq);

Plot the result.

surf(Xq,Yq,Vq);
title('Refined with Linear Interpolation');
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griddedInterpolant in Four Dimensions

This example creates a 4-D interpolant and evaluates it at a single point.

1 Create a coarse grid and sample values.

[X1,X2,X3,X4] = ndgrid((-5:2:5));
V = X1.^3 + X2.^2 + X3.^2 +X4;

2 Construct the griddedInterpolant.

F = griddedInterpolant(X1,X2,X3,X4,V,'linear');
3 Query the griddedInterpolant at a single point.
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Vq = F([-3.2 2.1 4.7 -1.3])

MATLAB outputs the following:

ans =

  -10.1000

.

Other Ways of Working with griddedInterpolant

Depending on the arrangement of your query points, you may prefer one evaluation
syntax over the others. For example, create the following interpolant:

[X,Y] = ndgrid(-1:.25:1,-2:.25:2);
V = 0.75*Y.^3-3*Y-2*X.^2;
F = griddedInterpolant(X,Y,V);

Query F using a full grid to give the values at the grid points:

[Xq,Yq] = ndgrid(-1:.1:0,-2:.1:0);
Vq = F(Xq,Yq);

You can also interpolate over the same grid using the compact grid format:

gvq = {-1:.1:0,-2:.1:0};
Vq = F(gvq);

Or you can query a single point:

Vq =  F(.315,.738)

which returns:

Vq =

   -2.1308

or a random set of scattered points:

rng('default')
Vq = F(rand(3,2))

which returns:
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Vq =

   -3.4919
   -3.3557
   -0.3515

You can also examine the Values in F:

 F.Values(1,3)

which returns:

 ans =

   -0.0313

Or you can replace the Values array:

F.Values = 2*V;

You can edit the properties in F on-the-fly. For example, you can replace the
interpolation method as follows:

 F.Method = 'cubic';

You can also replace the GridVectors in F. First, examine GridVectors:

gv = F.GridVectors;
gv{1}

gv is a cell array, and gv{1} displays the first grid vector:
ans =

   -1.0000   -0.7500   -0.5000   -0.2500    0    0.2500    0.5000    0.7500    1.0000

Now replace the GridVectors in F by creating a new cell array new_gv:

new_gv = {(0:0.3:1),(0:0.3:1)};
F.GridVectors = new_gv;
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Interpolation of Multiple 1-D Value Sets
This example shows how to interpolate three 1-D data sets in a single pass using
griddedInterpolant. This is a faster alternative to looping over your data sets.

Define the x-coordinates that are common to all value sets.

x = (1:5)';

Define the sets of sample points along the columns of matrix V.

V = [x, 2*x, 3*x]

V = 

     1     2     3
     2     4     6
     3     6     9
     4     8    12
     5    10    15

Create a 2-D grid of sample points.

samplePoints = {x, 1:size(V,2)};

This compact notation specifies a full 2-D grid. The first element, samplePoints{1},
contains the x-coordinates for V, and samplePoints{2} contains the y-coordinates. The
orientation of each coordinate vector does not matter.

Create the interpolant, F, by passing the sample points and sample values to
griddedInterpolant.

F = griddedInterpolant(samplePoints,V);

Create a 2-D query grid with 0.5 spacing along x over all columns of V.

queryPoints = {(1:0.5:5),1:size(V,2)};

Evaluate the interpolant at the x-coordinates for each value set.

Vq = F(queryPoints)

Vq = 
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    1.0000    2.0000    3.0000
    1.5000    3.0000    4.5000
    2.0000    4.0000    6.0000
    2.5000    5.0000    7.5000
    3.0000    6.0000    9.0000
    3.5000    7.0000   10.5000
    4.0000    8.0000   12.0000
    4.5000    9.0000   13.5000
    5.0000   10.0000   15.0000

See Also
griddedInterpolant

Related Examples
• “Interpolation with the griddedInterpolant Class” on page 8-38
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Interpolation of 2-D Selections in 3-D Grids
This example shows how to reduce the dimensionality of the grid plane arrays in 3-D to
solve a 2-D interpolation problem.

In some application areas, it might be necessary to interpolate a lower dimensional plane
of a grid; for example, interpolating a plane of a 3-D grid. When you extract the grid
plane from the 3-D grid, the resulting arrays might be in 3-D format. You can use the
squeeze function to reduce the dimensionality of the grid plane arrays to solve the
problem in 2-D.

Create a 3-D sample grid and corresponding values.

[X,Y,Z] = ndgrid(1:5);
V = X.^2 + Y.^2 +Z;

Select a 2-D sample from the grid. In this case, the third column of samples.

x = X(:,3,:);
z = Z(:,3,:);
v = V(:,3,:);

The 2-D plane occurs at Y=3, so the Y dimension has been fixed. x, z, and v are 5-by-1-
by-5 arrays. You must reduce them to 2-D arrays before evaluating the interpolant.

Reduce x, z, and v down to 2-D arrays using the squeeze function.

x = squeeze(x);
z = squeeze(z);
v = squeeze(v);

Interpolate the 2-D slice over a finer grid of query points.

[Xq,Zq] = ndgrid(1:0.5:5);
Vq = interpn(x,z,v,Xq,Zq);

Plot the results.

figure
surf(Xq,Zq,Vq);
xlabel('Xq');
ylabel('Zq');
zlabel('Vq');
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See Also
interpn | squeeze

More About
• “Gridded Data Representation” on page 8-4
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Interpolating Scattered Data

In this section...
“Scattered Data” on page 8-54
“Interpolating Scattered Data Using griddata and griddatan” on page 8-57
“scatteredInterpolant Class” on page 8-61
“Interpolating Scattered Data Using the scatteredInterpolant Class” on page 8-62
“Interpolation of Complex Scattered Data” on page 8-71
“Addressing Problems in Scattered Data Interpolation” on page 8-74

Scattered Data

Scattered data consists of a set of points X and corresponding values V, where the points
have no structure or order between their relative locations. There are various approaches
to interpolating scattered data. One widely used approach uses a Delaunay triangulation
of the points.

This example shows how to construct an interpolating surface by triangulating the points
and lifting the vertices by a magnitude V into a dimension orthogonal to X.

There are variations on how you can apply this approach. In this example, the
interpolation is broken down into separate steps; typically, the overall interpolation
process is accomplished with one function call.

Create a scattered data set on the surface of a paraboloid.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; ...
      0.8 1.2; 3.3 1.5; -4.0 -1.0; -2.3 -0.7; 
      0 -0.5; 2.0 -1.5; 3.7 -0.8; -3.5 -2.9; ...
      -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
V = X(:,1).^2 + X(:,2).^2;
hold on
plot3(X(:,1),X(:,2),zeros(15,1), '*r')
axis([-4, 4, -4, 4, 0, 25]);
grid
stem3(X(:,1),X(:,2),V,'^','fill')
hold off
view(322.5, 30);
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Create a Delaunay triangulation, lift the vertices, and evaluate the interpolant at the
query point Xq.

figure('Color', 'white')
t = delaunay(X(:,1),X(:,2));

hold on

trimesh(t,X(:,1),X(:,2), zeros(15,1), ...
    'EdgeColor','r', 'FaceColor','none')
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(t,X(:,1),X(:,2), V, 'FaceColor', ...
    defaultFaceColor, 'FaceAlpha',0.9);
plot3(X(:,1),X(:,2),zeros(15,1), '*r')
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axis([-4, 4, -4, 4, 0, 25]);
grid
plot3(-2.6,-2.6,0,'*b','LineWidth', 1.6)
plot3([-2.6 -2.6]',[-2.6 -2.6]',[0 13.52]','-b','LineWidth',1.6)
hold off

view(322.5, 30);

text(-2.0, -2.6, 'Xq', 'FontWeight', 'bold', ...
'HorizontalAlignment','center', 'BackgroundColor', 'none');

This step generally involves traversing of the triangulation data structure to find the
triangle that encloses the query point. Once you find the point, the subsequent steps to
compute the value depend on the interpolation method. You could compute the nearest
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point in the neighborhood and use the value at that point (the nearest-neighbor
interpolation method). You could also compute the weighted sum of values of the three
vertices of the enclosing triangle (the linear interpolation method). These methods and
their variants are covered in texts and references on scattered data interpolation.

Though the illustration highlights 2-D interpolation, you can apply this technique to
higher dimensions. In more general terms, given a set of points X and corresponding
values V, you can construct an interpolant of the form V = F(X). You can evaluate the
interpolant at a query point Xq, to give Vq = F(Xq). This is a single-valued function; for
any query point Xq within the convex hull of X, it will produce a unique value Vq. The
sample data is assumed to respect this property in order to produce a satisfactory
interpolation.

MATLAB provides two ways to perform triangulation-based scattered data interpolation:

• The functions griddata and griddatan
• The scatteredInterpolant class

The griddata function supports 2-D scattered data interpolation. The griddatan
function supports scattered data interpolation in N-D; however, it is not practical in
dimensions higher than 6-D for moderate to large point sets, due to the exponential
growth in memory required by the underlying triangulation.

The scatteredInterpolant class supports scattered data interpolation in 2-D and 3-D
space. Use of this class is encouraged as it is more efficient and readily adapts to a wider
range of interpolation problems.

Interpolating Scattered Data Using griddata and griddatan

The griddata and griddatan functions take a set of sample points, X, corresponding
values, V, and query points, Xq, and return the interpolated values, Vq. The calling
syntax is similar for each function; the primary distinction is the 2-D / 3–D griddata
function lets you define the points in terms of X, Y / X, Y, Z coordinates. These two
functions interpolate scattered data at predefined grid-point locations; the intent is to
produce gridded data, hence the name. Interpolation is more general in practice. You
might want to query at arbitrary locations within the convex hull of the points.

This example shows how the griddata function interpolates scattered data at a set of
grid points and uses this gridded data to create a contour plot.
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Plot the seamount data set (a seamount is an underwater mountain). The data set
consists of a set of longitude (x) and latitude (y) locations, and corresponding seamount
elevations (z) measured at those coordinates.

load seamount
plot3(x,y,z,'.','markersize',12)
xlabel('Longitude')
ylabel('Latitude')
zlabel('Depth in Feet')
grid on

Use meshgrid to create a set of 2-D grid points in the longitude-latitude plane and then
use griddata to interpolate the corresponding depth at those points.
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figure
[xi,yi] = meshgrid(210.8:0.01:211.8, -48.5:0.01:-47.9);
zi = griddata(x,y,z,xi,yi);
surf(xi,yi,zi);
xlabel('Longitude')
ylabel('Latitude')
zlabel('Depth in Feet')

Now that the data is in a gridded format, compute and plot the contours.

figure
[c,h] = contour(xi,yi,zi);
clabel(c,h);
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xlabel('Longitude')
ylabel('Latitude')

You can also use griddata to interpolate at arbitrary locations within the convex hull of
the dataset. For example, the depth at coordinates (211.3, -48.2) is given by:

zi = griddata(x,y,z, 211.3, -48.2);

The underlying triangulation is computed each time the griddata function is called.
This can impact performance if the same data set is interpolated repeatedly with
different query points. The scatteredInterpolant class described in “Interpolating
Scattered Data Using the scatteredInterpolant Class” on page 8-62 is more efficient in
this respect.
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MATLAB software also provides griddatan to support interpolation in higher
dimensions. The calling syntax is similar to griddata.

scatteredInterpolant Class

The griddata function is useful when you need to interpolate to find the values at a set
of predefined grid-point locations. In practice, interpolation problems are often more
general, and the scatteredInterpolant class provides greater flexibility. The class
has the following advantages:

• It produces an interpolating function that can be queried efficiently. That is, the
underlying triangulation is created once and reused for subsequent queries.

• The interpolation method can be changed independently of the triangulation.
• The values at the data points can be changed independently of the triangulation.
• Data points can be incrementally added to the existing interpolant without triggering

a complete recomputation. Data points can also be removed and moved efficiently,
provided the number of points edited is small relative to the total number of sample
points.

• It provides extrapolation functionality for approximating values at points that fall
outside the convex hull. See “Extrapolating Scattered Data” on page 8-87 for more
information.

scatteredInterpolant provides the following interpolation methods:

• 'nearest' — Nearest-neighbor interpolation, where the interpolating surface is
discontinuous.

• 'linear' — Linear interpolation (default), where the interpolating surface is C0
continuous.

• 'natural' — Natural-neighbor interpolation, where the interpolating surface is C1
continuous except at the sample points.

The scatteredInterpolant class supports scattered data interpolation in 2-D and 3-D
space. You can create the interpolant by calling scatteredInterpolant and passing
the point locations and corresponding values, and optionally the interpolation and
extrapolation methods. See the scatteredInterpolant reference page for more
information about the syntaxes you can use to create and evaluate a
scatteredInterpolant.
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Interpolating Scattered Data Using the scatteredInterpolant Class
This example shows how to use scatteredInterpolant to interpolate a scattered
sampling of the peaks function.

Create the scattered data set.

X = -3 + 6.*gallery('uniformdata',[250 2],0);
V = peaks(X(:,1),X(:,2));

Create the interpolant.

F = scatteredInterpolant(X,V)

F = 
  scatteredInterpolant with properties:

                 Points: [250x2 double]
                 Values: [250x1 double]
                 Method: 'linear'
    ExtrapolationMethod: 'linear'

The Points property represents the coordinates of the data points, and the Values
property represents the associated values. The Method property represents the
interpolation method that performs the interpolation. The ExtrapolationMethod
property represents the extrapolation method used when query points fall outside the
convex hull.

You can access the properties of F in the same way you access the fields of a struct. For
example, use F.Points to examine the coordinates of the data points.

Evaluate the interpolant.

scatteredInterpolant provides subscripted evaluation of the interpolant. It is
evaluated the same way as a function. You can evaluate the interpolant as follows. In
this case, the value at the query location is given by Vq. You can evaluate at a single
query point:

Vq = F([1.5 1.25])

Vq = 1.3966

You can also pass individual coordinates:
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Vq = F(1.5, 1.25)

Vq = 1.3966

You can evaluate at a vector of point locations:

Xq = [0.5 0.25; 0.75 0.35; 1.25 0.85];
Vq = F(Xq)

Vq = 

    1.0880
    1.8127
    2.3472

You can evaluate F at grid point locations and plot the result.

[Xq,Yq] = meshgrid(-2.5:0.125:2.5);
Vq = F(Xq,Yq);
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
title('Linear Interpolation Method','fontweight','b');
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Change the interpolation method.

You can change the interpolation method on the fly. Set the method to 'nearest'.

F.Method = 'nearest';

Reevaluate and plot the interpolant as before.

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'),ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Nearest neighbor Interpolation Method','fontweight','b');
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Change the interpolation method to natural neighbor, reevaluate, and plot the results.

F.Method = 'natural';
Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'),ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Natural neighbor Interpolation Method','fontweight','b');
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Replace the values at the sample data locations.

You can change the values V at the sample data locations, X, on the fly. This is useful in
practice as some interpolation problems may have multiple sets of values at the same
locations. For example, suppose you want to interpolate a 3-D velocity field that is
defined by locations (x, y, z) and corresponding componentized velocity vectors (Vx, Vy,
Vz). You can interpolate each of the velocity components by assigning them to the values
property (V) in turn. This has important performance benefits, because it allows you to
reuse the same interpolant without incurring the overhead of computing a new one each
time.
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The following steps show how to change the values in our example. You will compute the

values using the expression, .
V = X(:,1).*exp(-X(:,1).^2-X(:,2).^2);
F.Values = V;

Evaluate the interpolant and plot the result.
Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Natural neighbor interpolation of v = x.*exp(-x.^2-y.^2)')
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Add additional point locations and values to the existing interpolant.

This performs an efficient update as opposed to a complete recomputation using the
augmented data set.

When adding sample data, it is important to add both the point locations and the
corresponding values.

Continuing the example, create new sample points as follows:

X = -1.5 + 3.*rand(100,2);
V = X(:,1).*exp(-X(:,1).^2-X(:,2).^2);

Add the new points and corresponding values to the triangulation.

F.Points(end+(1:100),:) = X;
F.Values(end+(1:100)) = V;

Evaluate the refined interpolant and plot the result.

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
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Remove data from the interpolant.

You can incrementally remove sample data points from the interpolant. You also can
remove data points and corresponding values from the interpolant. This is useful for
removing spurious outliers.

When removing sample data, it is important to remove both the point location and the
corresponding value.

Remove the 25th point.

F.Points(25,:) = [];
F.Values(25) = [];
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Remove points 5 to 15.

F.Points(5:15,:) = [];
F.Values(5:15) = [];

Retain 150 points and remove the rest.

F.Points(150:end,:) = [];
F.Values(150:end) = [];

This creates a coarser surface when you evaluate and plot:

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
title('Interpolation of v = x.*exp(-x.^2-y.^2) with sample points removed')
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Interpolation of Complex Scattered Data

This example shows how to interpolate scattered data when the value at each sample
location is complex.

Create the sample data.

X = -3 + 6 .* gallery('uniformdata',[250 2],0);
V = complex(X(:,1).*X(:,2), X(:,1).^2 + X(:,2).^2);

Create the interpolant.

F = scatteredInterpolant(X,V);
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Create a grid of query points and evaluate the interpolant at the grid points.

[Xq,Yq] = meshgrid(-2.5:0.125:2.5);
Vq = F(Xq,Yq);

Plot the real component of Vq.

VqReal = real(Vq);
figure
surf(Xq,Yq,VqReal);
xlabel('X');
ylabel('Y');
zlabel('Real Value - V');
title('Real Component of Interpolated Value');
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Plot the imaginary component of Vq.

VqImag = imag(Vq);
figure
surf(Xq,Yq,VqImag);
xlabel('X');
ylabel('Y');
zlabel('Imaginary Value - V');
title('Imaginary Component of Interpolated Value');
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Addressing Problems in Scattered Data Interpolation

Many of the illustrative examples in the previous sections dealt with the interpolation of
point sets that were sampled on smooth surfaces. In addition, the points were relatively
uniformly spaced. For example, clusters of points were not separated by relatively large
distances. In addition, the interpolant was evaluated well within the convex hull of the
point locations.

When dealing with real-world interpolation problems the data may be more challenging.
It may come from measuring equipment that is likely to produce inaccurate readings or
outliers. The underlying data may not vary smoothly, the values may jump abruptly from
point to point. This section provides you with some guidelines to identify and address
problems with scattered data interpolation.

Input Data Containing NaNs

You should preprocess sample data that contains NaN values to remove the NaN values as
this data cannot contribute to the interpolation. If a NaN is removed, the corresponding
data values/coordinates should also be removed to ensure consistency. If NaN values are
present in the sample data, the constructor will error when called.

The following example illustrates how to remove NaNs.

Create some data and replace some entries with NaN:

x = rand(25,1)*4-2;
y = rand(25,1)*4-2;
V = x.^2 + y.^2;

x(5) = NaN; x(10) = NaN; y(12) = NaN; V(14) = NaN;

This code errors:

F = scatteredInterpolant(x,y,V);

Instead, find the sample point indices of the NaNs and then construct the interpolant:

nan_flags = isnan(x) | isnan(y) | isnan(V);

x(nan_flags) = [];
y(nan_flags) = [];
V(nan_flags) = [];
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F = scatteredInterpolant(x,y,V);

The following example is similar if the point locations are in matrix form. First, create
data and replace some entries with NaN values.

X = rand(25,2)*4-2;
V = X(:,1).^2 + X(:,2).^2;

X(5,1) = NaN; X(10,1) = NaN; X(12,2) = NaN; V(14) = NaN;

This code errors:

F = scatteredInterpolant(X,V);

Find the sample point indices of the NaN and then construct the interpolant:

nan_flags = isnan(X(:,1)) | isnan(X(:,2)) | isnan(V);

X(nan_flags,:) = [];
V(nan_flags) = [];

F = scatteredInterpolant(X,V);

Interpolant Outputs NaN Values

griddata and griddatan return NaN values when you query points outside the convex
hull using the 'linear' or 'natural' methods. However, you can expect numeric
results if you query the same points using the 'nearest' method. This is because the
nearest neighbor to a query point exists both inside and outside the convex hull.

If you want to compute approximate values outside the convex hull, you should use
scatteredInterpolant. See “Extrapolating Scattered Data” on page 8-87 for more
information.

Handling Duplicate Point Locations

Input data is rarely “perfect” and your application could have to handle duplicate data
point locations. Two or more data points at the same location in your data set can have
different corresponding values. In this scenario, scatteredInterpolant merges the
points and computes the average of the corresponding values. This example shows how
scatteredInterpolant performs an interpolation on a data set with duplicate points.
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1 Create some sample data that lies on a planar surface:

x = rand(100,1)*6-3;
y = rand(100,1)*6-3;

V = x + y;
2 Introduce a duplicate point location by assigning the coordinates of point 50 to point

100:

x(50) = x(100);
y(50) = y(100);

3 Create the interpolant. Notice that F contains 99 unique data points:

F = scatteredInterpolant(x,y,V)
4 Check the value associated with the 50th point:

F.Values(50)

This value is the average of the original 50th and 100th value, as these two data points
have the same location:

(V(50)+V(100))/2

In this scenario the interpolant resolves the ambiguity in a reasonable manner. However
in some instances, data points can be close rather than coincident, and the values at
those locations can be different.

In some interpolation problems, multiple sets of sample values might correspond to the
same locations. For example, a set of values might be recorded at the same locations at
different periods in time. For efficiency, you can interpolate one set of readings and then
replace the values to interpolate the next set.

Always use consistent data management when replacing values in the presence of
duplicate point locations. Suppose you have two sets of values associated with the 100
data point locations and you would like to interpolate each set in turn by replacing the
values.

1 Consider two sets of values:

V1 = x + 4*y;
V2 = 3*x + 5*y

2 Create the interpolant. scatteredInterpolant merges the duplicate locations and
the interpolant contains 99 unique sample points:
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F = scatteredInterpolant(x,y,V1)

Replacing the values directly via F.Values = V2 means assigning 100 values to 99
samples. The context of the previous merge operation is lost; the number of sample
locations will not match the number of sample values. The interpolant will require
the inconsistency to be resolved to support queries.

In this more complex scenario, it is necessary to remove the duplicates prior to creating
and editing the interpolant. Use the unique function to find the indices of the unique
points. unique can also output arguments that identify the indices of the duplicate
points.

[~, I, ~] = unique([x y],'first','rows');
I = sort(I);
x = x(I);
y = y(I);
V1 = V1(I);
V2 = V2(I);
F = scatteredInterpolant(x,y,V1)

Now you can use F to interpolate the first data set. Then you can replace the values to
interpolate the second data set.

F.Values = V2;

Achieving Efficiency When Editing a scatteredInterpolant

scatteredInterpolant allows you to edit the properties representing the sample
values (F.Values) and the interpolation method (F.Method). Since these properties are
independent of the underlying triangulation, the edits can be performed efficiently.
However, like working with a large array, you should take care not to accidentally create
unnecessary copies when editing the data. Copies are made when more than one variable
references an array and that array is then edited.

A copy is not made in the following:

A1 = magic(4)
A1(4,4) = 11

However, a copy is made in this scenario because the array is referenced by another
variable. The arrays A1 and A2 can no longer share the same data once the edit is made:
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A1 = magic(4)
A2 = A1
A1(4,4) = 32

Similarly, if you pass the array to a function and edit the array within that function, a
deep copy may be made depending on how the data is managed.
scatteredInterpolant contains data and it behaves like an array—in MATLAB
language, it is called a value object. The MATLAB language is designed to give optimum
performance when your application is structured into functions that reside in files.
Prototyping at the command line may not yield the same level of performance.

The following example demonstrates this behavior, but it should be noted that
performance gains in this example do not generalize to other functions in MATLAB.

This code does not produce optimal performance:
x = rand(1000000,1)*4-2;
y = rand(1000000,1)*4-2;
z = x.*exp(-x.^2-y.^2);
tic; F = scatteredInterpolant(x,y,z); toc
tic; F.Values = 2*z; toc

You can place the code in a function file to execute it more efficiently.

When MATLAB executes a program that is composed of functions that reside in files, it
has a complete picture of the execution of the code; this allows MATLAB to optimize for
performance. When you type the code at the command line, MATLAB cannot anticipate
what you are going to type next, so it cannot perform the same level of optimization.
Developing applications through the creation of reusable functions is general and
recommended practice, and MATLAB will optimize the performance in this setting.

Interpolation Results Poor Near the Convex Hull

The Delaunay triangulation is well suited to scattered data interpolation problems
because it has favorable geometric properties that produce good results. These properties
are:

• The rejection of sliver-shaped triangles/tetrahedra in favor of more equilateral-shaped
ones.

• The empty circumcircle property that implicitly defines a nearest-neighbor relation
between the points.

The empty circumcircle property ensures the interpolated values are influenced by
sample points in the neighborhood of the query location. Despite these qualities, in some
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situations the distribution of the data points may lead to poor results and this typically
happens near the convex hull of the sample data set. When the interpolation produces
unexpected results, a plot of the sample data and underlying triangulation can often
provide insight into the problem.

This example shows an interpolated surface that deteriorates near the boundary.

Create a sample data set that will exhibit problems near the boundary.

t = 0.4*pi:0.02:0.6*pi;
x1 = cos(t)';
y1 = sin(t)'-1.02;
x2 = x1;
y2 = y1*(-1);
x3 = linspace(-0.3,0.3,16)';
y3 = zeros(16,1);
x = [x1;x2;x3];
y = [y1;y2;y3];

Now lift these sample points onto the surface  and interpolate the surface.

z = x.^2 + y.^2;
F = scatteredInterpolant(x,y,z);
[xi,yi] = meshgrid(-0.3:.02:0.3, -0.0688:0.01:0.0688);
zi = F(xi,yi);
mesh(xi,yi,zi)
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Interpolated Surface');
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The actual surface is:

zi = xi.^2 + yi.^2;
figure
mesh(xi,yi,zi)
title('Actual Surface')
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To understand why the interpolating surface deteriorates near the boundary, it is helpful
to look at the underlying triangulation:

dt = delaunayTriangulation(x,y);
figure
plot(x,y,'*r')
axis equal
hold on
triplot(dt)
plot(x1,y1,'-r')
plot(x2,y2,'-r')
title('Triangulation Used to Create the Interpolant')
hold off

 Interpolating Scattered Data

8-81



The triangles within the red boundaries are relatively well shaped; they are constructed
from points that are in close proximity and the interpolation works well in this region.
Outside the red boundary, the triangles are sliver-like and connect points that are
remote from each other. There is not sufficient sampling to accurately capture the
surface, so it is not surprising that the results in these regions are poor. In 3-D, visual
inspection of the triangulation gets a bit trickier, but looking at the point distribution can
often help illustrate potential problems.

The MATLAB® 4 griddata method, 'v4', is not triangulation-based and is not affected
by deterioration of the interpolation surface near the boundary.

[xi,yi] = meshgrid(-0.3:.02:0.3, -0.0688:0.01:0.0688);
zi = griddata(x,y,z,xi,yi,'v4');
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mesh(xi,yi,zi)
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b')
zlabel('Value - V','fontweight','b')
title('Interpolated surface from griddata with v4 method','fontweight','b');

The interpolated surface from griddata using the 'v4' method corresponds to the
expected actual surface.
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Interpolation Using a Specific Delaunay Triangulation
In this section...
“Nearest-Neighbor Interpolation Using a delaunayTriangulation Query” on page 8-84
“Linear Interpolation Using a delaunayTriangulation Query” on page 8-85

Nearest-Neighbor Interpolation Using a delaunayTriangulation Query

This example shows how to perform nearest-neighbor interpolation on a scattered set of
points using a specific Delaunay triangulation.

Create a delaunayTriangulation of a set of scattered points in 2-D.

P = -2.5 + 5*gallery('uniformdata',[50 2],0);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [50x2 double]
    ConnectivityList: [87x3 double]
         Constraints: []

Sample a parabolic function, V(x,y), at the points specified in P.

V = P(:,1).^2 + P(:,2).^2;

Define 10 random query points.

Pq = -2 + 4*gallery('uniformdata',[10 2],1);

Perform nearest-neighbor interpolation on V using the triangulation, DT. Use
nearestNeighbor to find the indices of the nearest-neighbor vertices, vi, for the set of
query points, Pq. Then examine the specific values of V at the indices.

vi = nearestNeighbor(DT,Pq);
Vq = V(vi)

Vq = 

    5.3163

8 Interpolation

8-84



    0.3453
    4.3026
    1.2579
    1.9435
    5.9194
    3.9030
    0.4172
   11.7282
    0.8641

Linear Interpolation Using a delaunayTriangulation Query

This example shows how to perform linear interpolation on a scattered set of points with
a specific Delaunay triangulation.

You can use the triangulation method, pointLocation, to compute the enclosing
triangle of a query point and the magnitudes of the vertex weights. The weights are
called barycentric coordinates, and they represent a partition of unity. That is, the sum
of the three weights equals 1. The interpolated value of a function, V, at a query point is
the sum of the weighted values of V at the three vertices. That is, if the function has
values, V1, V2, V3 at the three vertices, and the weights are B1, B2, B3, then the
interpolated value is (V1)(B1) + (V2)(B2) + (V3)(B3).

Create a delaunayTriangulation of a set of scattered points in 2-D.

P = -2.5 + 5*gallery('uniformdata',[50 2],0);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [50x2 double]
    ConnectivityList: [87x3 double]
         Constraints: []

Sample a parabolic function, V(x,y), at the points in P.

V = P(:,1).^2 + P(:,2).^2;

Define 10 random query points.
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Pq = -2 + 4*gallery('uniformdata',[10 2],1);

Find the triangle that encloses each query point using the pointLocation method. In
the code below, ti contains the IDs of the enclosing triangles and bc contains the
barycentric coordinates associated with each triangle.

[ti,bc] = pointLocation(DT,Pq);

Find the values of V(x,y) at the vertices of each enclosing triangle.

triVals = V(DT(ti,:));

Calculate the sum of the weighted values of V(x,y) using the dot product.

Vq = dot(bc',triVals')'

Vq = 

    5.9456
    1.1222
    4.7963
    0.9373
    2.3533
    3.4219
    2.3104
    0.7728
    8.0479
    1.0886

See Also
delaunayTriangulation | nearestNeighbor | pointLocation

More About
• “Interpolating Scattered Data” on page 8-54
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Extrapolating Scattered Data
In this section...
“Factors That Affect the Accuracy of Extrapolation” on page 8-87
“Compare Extrapolation of Coarsely and Finely Sampled Scattered Data” on page 8-87
“Extrapolation of 3-D Data” on page 8-91

Factors That Affect the Accuracy of Extrapolation

scatteredInterpolant provides functionality for approximating values at points that
fall outside the convex hull. The 'linear' extrapolation method is based on a least-
squares approximation of the gradient at the boundary of the convex hull. The values it
returns for query points outside the convex hull are based on the values and gradients at
the boundary. The quality of the solution depends on how well you’ve sampled your data.
If your data is coarsely sampled, the quality of the extrapolation is poor.

In addition, the triangulation near the convex hull boundary can have sliver-like
triangles. These triangles can compromise your extrapolation results in the same way
that they can compromise interpolation results. See “Interpolation Results Poor Near the
Convex Hull” on page 8-78 for more information.

You should inspect your extrapolation results visually using your knowledge of the
behavior outside the domain.

Compare Extrapolation of Coarsely and Finely Sampled Scattered Data

This example shows how to interpolate two different samplings of the same parabolic
function. It also shows that a better distribution of sample points produces better
extrapolation results.

Create a radial distribution of points spaced 10 degrees apart around 10 concentric
circles. Use bsxfun to compute the coordinates,  and .

theta = 0:10:350;
c = cosd(theta);
s = sind(theta);
r = 1:10;
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x1 = bsxfun(@times,r.',c);
y1 = bsxfun(@times,r.',s);

figure
plot(x1,y1,'*b')
axis equal

Create a second, more coarsely distributed set of points. Use the gallery function to
create random samplings in the range, [-10, 10].

x2 = -10 + 20*gallery('uniformdata',[25 1],0);
y2 = -10 + 20*gallery('uniformdata',[25 1],1);
figure
plot(x2,y2,'*')
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Sample a parabolic function, v(x,y), at both sets of points.

v1 = x1.^2 + y1.^2;
v2 = x2.^2 + y2.^2;

Create a scatteredInterpolant for each sampling of v(x,y).

F1 = scatteredInterpolant(x1(:),y1(:),v1(:));
F2 = scatteredInterpolant(x2(:),y2(:),v2(:));

Create a grid of query points that extend beyond each domain.
[xq,yq] = ndgrid(-20:20);

Evaluate F1 and plot the results.
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figure
vq1 = F1(xq,yq);
surf(xq,yq,vq1)

Evaluate F2 and plot the results.

figure
vq2 = F2(xq,yq);
surf(xq,yq,vq2)
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The quality of the extrapolation is not as good for F2 because of the coarse sampling of
points in v2.

Extrapolation of 3-D Data

This example shows how to extrapolate a well sampled 3-D gridded dataset using
scatteredInterpolant. The query points lie on a planar grid that is completely
outside domain.

Create a 10-by-10-by-10 grid of sample points. The points in each dimension are in the
range, [-10, 10].
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[x,y,z] = ndgrid(-10:10);

Sample a function, v(x,y,z), at the sample points.

v = x.^2 + y.^2 + z.^2;

Create a scatteredInterpolant, specifying linear interpolation and extrapolation.

F = scatteredInterpolant(x(:),y(:),z(:),v(:),'linear','linear');

Evaluate the interpolant over an x-y grid spanning the range, [-20,20] at an elevation, z =
15.

[xq,yq,zq] = ndgrid(-20:20,-20:20,15);
vq = F(xq,yq,zq);
figure
surf(xq,yq,vq)
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The extrapolation returned good results because the function is well sampled.
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Normalize Data with Differing Magnitudes
This example shows how to use normalization to improve scattered data interpolation
results with griddata. Normalization can improve the interpolation results in some
cases, but in others it can compromise the accuracy of the solution. Whether to use
normalization is a judgment made based on the nature of the data being interpolated.

• Benefits: Normalizing your data can potentially improve the interpolation result
when the independent variables have different units and substantially different
scales. In this case, scaling the inputs to have similar magnitudes might improve the
numerical aspects of the interpolation. An example where normalization would be
beneficial is if x represents engine speed in RPMs from 500 to 3500, and y represents
engine load from 0 to 1. The scales of x and y differ by a few orders of magnitude, and
they have different units.

• Cautions: Use caution when normalizing your data if the independent variables have
the same units, even if the scales of the variables are different. With data of the same
units, normalization distorts the solution by adding a directional bias, which affects
the underlying triangulation and ultimately compromises the accuracy of the
interpolation. An example where normalization is erroneous is if both x and y
represent locations and have units of meters. Scaling x and y unequally is not
recommended because 10 m due East should be spatially the same as 10 m due North.

Create some sample data where the values in y are a few orders of magnitude larger
than those in x. Assume that x and y have different units.

x = rand(1,500)/100; 
y = 2.*(rand(1,500)-0.5).*90; 
z = (x.*1e2).^2; 

Use the sample data to construct a grid of query points. Interpolate the sample data on
the grid and plot the results.

X = linspace(min(x),max(x),25); 
Y = linspace(min(y),max(y),25); 
[xq, yq] = meshgrid(X,Y); 
zq = griddata(x,y,z,xq,yq); 

plot3(x,y,z,'mo')
hold on
mesh(xq,yq,zq)
xlabel('x')
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ylabel('y')
hold off

The result produced by griddata is not very smooth and seems to be noisy. The differing
scales in the independent variables contribute to this, since a small change in the size of
one variable can lead to a much larger change in the size of the other variable.

Since x and y have different units, normalizing them so that they have similar
magnitudes should help produce better results. Normalize the sample points using
standard deviations and regenerate the interpolation using griddata.

% Normalize Sample Points
x = (x-mean(x))/std(x);
y = (y-mean(y))/std(y);
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% Regenerate Grid 
X = linspace(min(x),max(x),25); 
Y = linspace(min(y),max(y),25); 
[xq, yq] = meshgrid(X,Y); 

% Interpolate and Plot
zq = griddata(x,y,z,xq,yq);
plot3(x,y,z,'mo')
hold on
mesh(xq,yq,zq)

In this case, normalizing the sample points permits griddata to compute a smoother
solution.
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See Also
griddata | griddatan | scatteredInterpolant
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Resample Image with Gridded Interpolation
This example shows how to use griddedInterpolant to resample the pixels in an
image. Resampling an image is useful for adjusting the resolution and size, and you also
can use it to smooth out the pixels after zooming.

Load Image

Load and show the image ngc6543a.jpg, which is a Hubble Space Telescope image of
the planetary nebulae NGC 6543. This image displays several interesting structures,
such as concentric gas shells, jets of high-speed gas, and unusual knots of gas. The
matrix A that represents the image is a 650-by-600-by-3 matrix of uint8 integers.

A = imread('ngc6543a.jpg');
imshow(A)

8 Interpolation

8-98



 Resample Image with Gridded Interpolation

8-99



Create Interpolant

Create a gridded interpolant object for the image. For images it is suitable to use the
default grid, since the pixels have positive integer locations. Since
griddedInterpolant only works for double-precision and single-precision matrices,
convert the uint8 matrix to double precision.

F = griddedInterpolant(double(A));

Resample Image Pixels

When you are resampling an image using a large number of grid points, the best way to
query the interpolant is using grid vectors. The grid vectors are grouped together as
column vectors in a cell array {xg1,xg2,...,xgN}. Grid vectors are a compact way to
represent the grid of query points. With grid vectors, griddedInterpolant does not
need to form the full grid to carry out the calculations.

Find the size of the original matrix dimensions, and use those dimension sizes to
resample the image so that it is 120% the size. That is, for each 5 pixels in the original
image, the interpolated image has 6 pixels.

[sx,sy,sz] = size(A);
xq = (0:5/6:sx)';
yq = (0:5/6:sy)';
zq = (1:sz)';
vq = uint8(F({xq,yq,zq}));
figure
imshow(vq)
title('Higher Resolution')
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Similarly, reduce the size of the image by querying the interpolant with 55% fewer points
than the original image. While you can simply index into the original image matrix to
produce lower resolution images, interpolation enables you to resample the image at
noninteger pixel locations.

xq = (0:1.55:sx)';
yq = (0:1.55:sy)';
zq = (1:sz)';
vq = uint8(F({xq,yq,zq}));
figure
imshow(vq)
title('Lower Resolution')
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Smooth Out Zooming Artifacts

As you zoom in on an image, the pixels in the region of interest become larger and larger
and detail in the image is quickly lost. You can use image resampling to smooth out these
zooming artifacts.
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Zoom in on the bright spot in the center of the original image. (The indexing into A is to
center this bright spot in the image so that subsequent zooming does not push it out of
the frame.)

imshow(A(1:570,10:600,:),'InitialMagnification','fit')
zoom(10)
title('Original Image, 10x Zoom')
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Query the interpolant F to reproduce this zoomed image (approximately) with 10x higher
resolution. Compare the results from several different interpolation methods.

xq = (1:0.1:sx)';
yq = (1:0.1:sy)';
zq = (1:sz)';
figure
F.Method = 'linear';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Linear method')
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figure
F.Method = 'cubic';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Cubic method')

figure
F.Method = 'spline';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Spline method')
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See Also
griddedInterpolant | imshow

More About
• “Interpolating Gridded Data” on page 8-4

 See Also
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Optimization

• “Optimizing Nonlinear Functions” on page 9-2
• “Curve Fitting via Optimization” on page 9-8
• “Set Options” on page 9-11
• “Iterative Display” on page 9-15
• “Output Functions” on page 9-17
• “Plot Functions” on page 9-25
• “Troubleshooting and Tips” on page 9-28
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Optimizing Nonlinear Functions
In this section...
“Minimizing Functions of One Variable” on page 9-2
“Minimizing Functions of Several Variables” on page 9-4
“Maximizing Functions” on page 9-5
“fminsearch Algorithm” on page 9-5
“Reference” on page 9-7

Minimizing Functions of One Variable

Given a mathematical function of a single variable, you can use the fminbnd function to
find a local minimizer of the function in a given interval. For example, consider the
humps.m function, which is provided with MATLAB. The following figure shows the
graph of humps.

x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x')
ylabel('humps(x)')
grid on
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To find the minimum of the humps function in the range (0.3,1), use

x = fminbnd(@humps,0.3,1)

x = 0.6370

You can ask for a tabular display of output by passing a fourth argument created by the
optimset command to fminbnd:

opts = optimset('Display','iter');
x = fminbnd(@humps,0.3,1,opts)

 
 Func-count     x          f(x)         Procedure
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    1       0.567376      12.9098        initial
    2       0.732624      13.7746        golden
    3       0.465248      25.1714        golden
    4       0.644416      11.2693        parabolic
    5         0.6413      11.2583        parabolic
    6       0.637618      11.2529        parabolic
    7       0.636985      11.2528        parabolic
    8       0.637019      11.2528        parabolic
    9       0.637052      11.2528        parabolic
 
Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04 

x = 0.6370

The iterative display shows the current value of x and the function value at f(x) each
time a function evaluation occurs. For fminbnd, one function evaluation corresponds to
one iteration of the algorithm. The last column shows what procedure is being used at
each iteration, either a golden section search or a parabolic interpolation. For more
information, see “Iterative Display” on page 9-15.

Minimizing Functions of Several Variables

The fminsearch function is similar to fminbnd except that it handles functions of many
variables. Specify a starting vector x0 rather than a starting interval. fminsearch
attempts to return a vector x that is a local minimizer of the mathematical function near
this starting vector.

To try fminsearch, create a function three_var of three variables, x, y, and z.

function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;

Now find a minimum for this function using x = -0.6, y = -1.2, and z = 0.135 as
the starting values.

v = [-0.6,-1.2,0.135];
a = fminsearch(@three_var,v)
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a =
    0.0000   -1.5708    0.1803

Maximizing Functions

The fminbnd and fminsearch solvers attempt to minimize an objective function. If you
have a maximization problem, that is, a problem of the form
max ( ),

x
f x

then define g(x) = –f(x), and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminbnd(@(x)-tan(cos(x)),3,8)

x =
    6.2832

fval =
   -1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832.
This answer is correct since, to five digits, the maximum is tan(1) = 1.5574, which occurs
at x = 2π = 6.2832.

fminsearch Algorithm

fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias et al. [1].
This algorithm uses a simplex of n + 1 points for n-dimensional vectors x. The algorithm
first makes a simplex around the initial guess x0 by adding 5% of each component x0(i) to
x0. The algorithm uses these n vectors as elements of the simplex in addition to x0. (The
algorithm uses 0.00025 as component i if x0(i) = 0.) Then, the algorithm modifies the
simplex repeatedly according to the following procedure.

Note The keywords for the fminsearch iterative display appear in bold after the
description of the step.

1 Let x(i) denote the list of points in the current simplex, i = 1,...,n+1.
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2 Order the points in the simplex from lowest function value f(x(1)) to highest f(x(n
+1)). At each step in the iteration, the algorithm discards the current worst point x(n
+1), and accepts another point into the simplex. [Or, in the case of step 7 below, it
changes all n points with values larger than f(x(1))].

3 Generate the reflected point

r = 2m – x(n+1),

where

m = Σx(i)/n, i = 1...n,

and calculate f(r).
4 If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration. Reflect
5 If f(r) < f(x(1)), calculate the expansion point s

s = m + 2(m – x(n+1)),

and calculate f(s).

a If f(s) < f(r), accept s and terminate the iteration. Expand
b Otherwise, accept r and terminate the iteration. Reflect

6 If f(r) ≥ f(x(n)), perform a contraction between m and the better of x(n+1) and r:

a If f(r) < f(x(n+1)) (that is, r is better than x(n+1)), calculate

c = m + (r – m)/2

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration. Contract
outside Otherwise, continue with Step 7 (Shrink).

b If f(r) ≥ f(x(n+1)), calculate

cc = m + (x(n+1) – m)/2

and calculate f(cc). If f(cc) < f(x(n+1)), accept cc and terminate the iteration.
Contract inside Otherwise, continue with Step 7 (Shrink).

7 Calculate the n points

v(i) = x(1) + (x(i) – x(1))/2
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and calculate f(v(i)), i = 2,...,n+1. The simplex at the next iteration is x(1), v(2),...,v(n
+1). Shrink

The following figure shows the points that fminsearch can calculate in the procedure,
along with each possible new simplex. The original simplex has a bold outline. The
iterations proceed until they meet a stopping criterion.

m

x(n+1)

r

x(1)

v(n+1)

s

c

cc

Reference

[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties
of the Nelder-Mead Simplex Method in Low Dimensions.” SIAM Journal of
Optimization, Vol. 9, Number 1, 1998, pp. 112–147.

See Also

More About
• “Nonlinear Optimization” (Optimization Toolbox)
• “Curve Fitting via Optimization” on page 9-8
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Curve Fitting via Optimization
This example shows how to fit a nonlinear function to data. For this example, the
nonlinear function is the standard exponential decay curve

where  is the response at time , and  and  are the parameters to fit. Fitting the
curve means finding parameters  and  that minimize the sum of squared errors

where the times are  and the responses are . The sum of squared errors
is the objective function.

Create Sample Data

Usually, you have data from measurements. For this example, create artificial data
based on a model with  and , with normally distributed pseudorandom
errors.

rng default % for reproducibility
tdata = 0:0.1:10;
ydata = 40*exp(-0.5*tdata) + randn(size(tdata));

Write Objective Function

Write a function that accepts parameters A and lambda and data tdata and ydata, and
returns the sum of squared errors for the model . Put all the variables to optimize (A
and lambda) in a single vector variable (x). For more information, see “Minimizing
Functions of Several Variables” on page 9-4.

function sse = sseval(x,tdata,ydata)
A = x(1);
lambda = x(2);
sse = sum((ydata - A*exp(-lambda*tdata)).^2);

Save this objective function as a file named sseval.m on your MATLAB® path.
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The fminsearch solver applies to functions of one variable, x. However, the sseval
function has three variables. The extra variables tdata and ydata are not variables to
optimize, but are data for the optimization. Define the objective function for fminsearch
as a function of x alone:

fun = @(x)sseval(x,tdata,ydata);

For information about including extra parameters such as tdata and ydata, see
“Parameterizing Functions” on page 10-2.

Find the Best Fitting Parameters

Start from a random positive set of parameters x0, and have fminsearch find the
parameters that minimize the objective function.

x0 = rand(2,1);
bestx = fminsearch(fun,x0)

bestx =

   40.6877
    0.4984

The result bestx is reasonably near the parameters that generated the data, A = 40
and lambda = 0.5.

Check the Fit Quality

To check the quality of the fit, plot the data and the resulting fitted response curve.
Create the response curve from the returned parameters of your model.

A = bestx(1);
lambda = bestx(2);
yfit = A*exp(-lambda*tdata);
plot(tdata,ydata,'*');
hold on
plot(tdata,yfit,'r');
xlabel('tdata')
ylabel('Response Data and Curve')
title('Data and Best Fitting Exponential Curve')
legend('Data','Fitted Curve')
hold off
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See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
• “Nonlinear Data-Fitting” (Optimization Toolbox)
• “Nonlinear Regression” (Statistics and Machine Learning Toolbox)
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Set Options
In this section...
“How to Set Options” on page 9-11
“Options Table” on page 9-12
“Tolerances and Stopping Criteria” on page 9-13
“Output Structure” on page 9-14

How to Set Options

You can specify optimization parameters using an options structure that you create
using the optimset function. You then pass options as an input to the optimization
function, for example, by calling fminbnd with the syntax

x = fminbnd(fun,x1,x2,options)

or fminsearch with the syntax

x = fminsearch(fun,x0,options)

For example, to display output from the algorithm at each iteration, set the Display
option to 'iter':

options = optimset('Display','iter');
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Options Table
Option Description Solvers
Display A flag indicating whether intermediate steps

appear on the screen.

• 'notify' (default) displays output only if
the function does not converge.

• 'iter' displays intermediate steps (not
available with lsqnonneg). See “Iterative
Display” on page 9-15.

• 'off' displays no intermediate steps.
• 'final' displays just the final output.

fminbnd,
fminsearch,
fzero, lsqnonneg

FunValCheck Check whether objective function values are
valid.

• 'on' displays an error when the objective
function or constraints return a value that is
complex or NaN.

• 'off' (default) displays no error.

fminbnd,
fminsearch,
fzero

MaxFunEvals The maximum number of function evaluations
allowed. The default value is 500 for fminbnd
and 200*length(x0) for fminsearch.

fminbnd,
fminsearch

MaxIter The maximum number of iterations allowed. The
default value is 500 for fminbnd and
200*length(x0) for fminsearch.

fminbnd,
fminsearch

OutputFcn Display information on the iterations of the
solver. The default is [] (none). See “Output
Functions” on page 9-17.

fminbnd,
fminsearch,
fzero

PlotFcns Plot information on the iterations of the solver.
The default is [] (none). For available
predefined functions, see “Plot Functions” on
page 9-25.

fminbnd,
fminsearch,
fzero

TolFun The termination tolerance for the function value.
The default value is 1.e-4. See “Tolerances and
Stopping Criteria” on page 9-13.

fminsearch
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Option Description Solvers
TolX The termination tolerance for x. The default

value is 1.e-4. See “Tolerances and Stopping
Criteria” on page 9-13.

fminbnd,
fminsearch,
fzero, lsqnonneg

Tolerances and Stopping Criteria

The number of iterations in an optimization depends on the stopping criteria for the
solver. These criteria include several tolerances you can set. Generally, a tolerance is a
threshold which, if crossed, stops the iterations of a solver.

Tip Generally, set the TolFun and TolX tolerances to well above eps, and usually above
1e-14. Setting small tolerances does not guarantee accurate results. Instead, a solver
can fail to recognize when it has converged, and can continue futile iterations. A
tolerance value smaller than eps effectively disables that stopping condition.

• TolX is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If the
solver attempts to take a step that is smaller than TolX, the iterations end. Solvers
sometimes use TolX as a relative bound, meaning iterations end when |(xi – xi+1)| <
TolX*(1 + |xi|), or a similar relative measure.

�

�

TolFun

�

� �

TolX

1

2

3
4 5

Iterations end
when the last step
is smaller than
TolFun or TolX

• TolFun is a lower bound on the change in the value of the objective function during a
step. If |f(xi) – f(xi+1)| < TolFun, the iterations end. Solvers sometimes use TolFun as
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a relative bound, meaning iterations end when |f(xi) – f(xi+1)| < TolFun(1 + |f(xi)|), or
a similar relative measure.

• MaxIter is a bound on the number of solver iterations. MaxFunEvals is a bound on
the number of function evaluations.

Note Unlike other solvers, fminsearch stops when it satisfies both TolFun and TolX.

Output Structure

The output structure includes the number of function evaluations, the number of
iterations, and the algorithm. The structure appears when you provide fminbnd,
fminsearch, or fzero with a fourth output argument, as in

[x,fval,exitflag,output] = fminbnd(@humps,0.3,1);

The details of the output structure for each solver are on the function reference pages.

The output structure is not an option that you choose with optimset. It is an optional
output for fminbnd, fminsearch, and fzero.

See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
• “Output Functions” on page 9-17
• “Plot Functions” on page 9-25
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Iterative Display
You obtain details of the steps solvers take by setting the Display option to 'iter'
with optimset. The displayed output contains headings and items from the following
list.
Heading Information Displayed Solvers
Iteration Iteration number, meaning the number of steps

the algorithm has taken
fminsearch

Func-count Cumulative number of function evaluations fminbnd,
fminsearch,
fzero

x Current point fminbnd, fzero
f(x) Current objective function value fminbnd, fzero
min f(x) Smallest objective function value found fminsearch
Procedure Algorithm used during the iteration

• initial
• golden (golden section search)
• parabolic (parabolic interpolation)

fminbnd

• initial simplex
• expand
• reflect
• shrink
• contract inside
• contract outside

For details, see “fminsearch Algorithm” on page
9-5.

fminsearch
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Heading Information Displayed Solvers
• initial (initial point)
• search (search for an interval containing a

zero)
• bisection
• interpolation (linear interpolation or

inverse quadratic interpolation)

fzero

a, f(a), b, f(b) Search points and their function values while
looking for an interval with function values of
opposite signs

fzero

See Also

More About
• “Set Options” on page 9-11
• “Output Functions” on page 9-17
• “Plot Functions” on page 9-25
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Output Functions

In this section...
“What Is an Output Function?” on page 9-17
“Creating and Using an Output Function” on page 9-17
“Structure of the Output Function” on page 9-19
“Example of a Nested Output Function” on page 9-19
“Fields in optimValues” on page 9-22
“States of the Algorithm” on page 9-22
“Stop Flag” on page 9-23

What Is an Output Function?

An output function is a function that an optimization function calls at each iteration of
its algorithm. Typically, you use an output function to generate graphical output, record
the history of the data the algorithm generates, or halt the algorithm based on the data
at the current iteration. You can create an output function as a function file, a local
function, or a nested function.

You can use the OutputFcn option with the following MATLAB optimization functions:

• fminbnd
• fminsearch
• fzero

Creating and Using an Output Function

The following is a simple example of an output function that plots the points generated
by an optimization function.

function stop = outfun(x, optimValues, state)
stop = false;
hold on;
plot(x(1),x(2),'.');
drawnow
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You can use this output function to plot the points generated by fminsearch in solving
the optimization problem
min ( ) min .

x x

xf x e x x x x x= + + +( )1 4 2 21
2

2
2

1 2 2

To do so,

1 Create a file containing the preceding code and save it as outfun.m in a folder on
the MATLAB path.

2 Set the value of the Outputfcn field of the options structure to a function handle
to outfun.

options = optimset('OutputFcn', @outfun);
3 Enter the following commands:

hold on
objfun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
[x fval] = fminsearch(objfun, [-1 1], options)
hold off

These commands return the solution

x =
    0.1290   -0.5323

fval =
   -0.5689

and display the following plot of the points generated by fminsearch:
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Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• stop is a flag that is true or false depending on whether the optimization routine
halts or continues. See “Stop Flag” on page 9-23.

• x is the point computed by the algorithm at the current iteration.
• optimValues is a structure containing data from the current iteration. “Fields in

optimValues” on page 9-22 describes the structure in detail.
• state is the current state of the algorithm. “States of the Algorithm” on page 9-22

lists the possible values.

The optimization function passes the values of the input arguments to outfun at each
iteration.

Example of a Nested Output Function
The example in “Creating and Using an Output Function” on page 9-17 does not require
the output function to preserve data from one iteration to the next. When you do not need
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to save data between iterations, you can write the output function as a function file and
call the optimization function directly from the command line. However, to have an
output function to record data from one iteration to the next, write a single file that does
the following:

• Contains the output function as a nested function—see “Nested Functions” in
MATLAB Programming Fundamentals for more information.

• Calls the optimization function.

In the following example, the function file also contains the objective function as a local
function. You can instead write the objective function as a separate file or as an
anonymous function.

Nested functions have access to variables in the surrounding file. Therefore, this method
enables the output function to preserve variables from one iteration to the next.

The following example uses an output function to record the fminsearch iterates in
solving
min ( ) min .

x x

xf x e x x x x x= + + +( )1 4 2 21
2

2
2

1 2 2

The output function returns the sequence of points as a matrix called history.

To run the example, do the following steps:

1 Open a new file in the MATLAB Editor.
2 Copy and paste the following code into the file.

function [x fval history] = myproblem(x0)
    history = [];
    options = optimset('OutputFcn', @myoutput);
    [x fval] = fminsearch(@objfun, x0,options);
        
    function stop = myoutput(x,optimvalues,state);
        stop = false;
        if isequal(state,'iter')
          history = [history; x];
        end
    end
    
    function z = objfun(x)
      z = exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
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    end
end

3 Save the file as myproblem.m in a folder on the MATLAB path.
4 At the MATLAB prompt, enter

[x fval history] = myproblem([-1 1]);

The function fminsearch returns x, the optimal point, and fval, the value of the
objective function at x.

x,fval

x =
    0.1290   -0.5323

fval =
   -0.5689

In addition, the output function myoutput returns the matrix history, which contains
the points generated by the algorithm at each iteration, to the MATLAB workspace. The
first four rows of history are

history(1:4,:)

ans =

   -1.0000    1.0000
   -1.0000    1.0000
   -1.0750    0.9000
   -1.0125    0.8500

The final row of points in history is the same as the optimal point, x.

history(end,:)

ans =

    0.1290   -0.5323

objfun(history(end,:))

ans =

   -0.5689
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Fields in optimValues

The following table lists the fields of the optimValues structure that are provided by
the optimization functions fminbnd, fminsearch, and fzero.

The “Command-Line Display Headings” column of the table lists the headings that
appear when you set the Display parameter of options to 'iter'.
optimValues Field
(optimValues.field)

Description Command-Line Display
Heading

funccount Cumulative number of
function evaluations

Func-count

fval Function value at current
point

min f(x)

iteration Iteration number — starts
at 0

Iteration

procedure Procedure messages Procedure

States of the Algorithm

The following table lists the possible values for state:
State Description
'init' The algorithm is in the initial state before the first

iteration.
'interrupt' The algorithm is performing an iteration. In this state,

the output function can halt the current iteration of
the optimization. You might want the output function
to halt the iteration to improve the efficiency of the
computations. When state is set to 'interrupt', the
values of x and optimValues are the same as at the
last call to the output function, in which state is set
to 'iter'.

'iter' The algorithm is at the end of an iteration.
'done' The algorithm is in the final state after the last

iteration.
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The following code illustrates how the output function uses the value of state to decide
which tasks to perform at the current iteration.

switch state
    case 'init'
          % Setup for plots or dialog boxes
    case 'iter'
          % Make updates to plots or dialog boxes as needed
    case 'interrupt'
          % Check conditions to see whether optimization 
          % should quit
    case 'done'
          % Cleanup of plots, dialog boxes, or final plot
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization halts (true) or continues (false). The
following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues

The output function can stop an optimization at any iteration based on the current data
in optimValues. For example, the following code sets stop to true if the objective
function value is less than 5:

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if objective function is less than 5.
if optimValues.fval < 5
    stop = true;
end

Stopping an Optimization Based on Dialog Box Input

If you design a UI to perform optimizations, you can have the output function stop an
optimization with, for example, a Stop button. The following code shows how to do this
callback. The code assumes that the Stop button callback stores the value true in the
optimstop field of a handles structure called hObject stored in appdata.

function stop = myoutput(x, optimValues, state)
stop = false;
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% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

See Also

More About
• “Plot Functions” on page 9-25
• “Set Options” on page 9-11
• “Iterative Display” on page 9-15

9 Optimization

9-24



Plot Functions

In this section...
“What Is a Plot Function?” on page 9-25
“Example: Plot Function” on page 9-25

What Is a Plot Function?

The PlotFcns field of the options structure specifies one or more functions that an
optimization function calls at each iteration to plot various measures of progress. Pass a
function handle or cell array of function handles. The structure of a plot function is the
same as the structure of an output function. For more information on this structure, see
“Output Functions” on page 9-17.

You can use the PlotFcns option with the following MATLAB optimization functions:

• fminbnd
• fminsearch
• fzero

The predefined plot functions for these optimization functions are:

• @optimplotx plots the current point
• @optimplotfval plots the function value
• @optimplotfunccount plots the function count (not available for fzero)

To view or modify a predefined plot function, open the function file in the MATLAB
Editor. For example, to view the function file for plotting the current point, enter:

edit optimplotx.m

Example: Plot Function

View the progress of a minimization using fminsearch with the plot function
@optimplotfval:

1 Write a file for the objective function. For this example, use:
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function f = onehump(x)

r = x(1)^2 + x(2)^2;
s = exp(-r);
f = x(1)*s+r/20;

2 Set the options to use the plot function:

options = optimset('PlotFcns',@optimplotfval);
3 Call fminsearch starting from [2,1]:

[x ffinal] = fminsearch(@onehump,[2,1],options)
4 MATLAB returns the following:

x =
   -0.6691    0.0000

ffinal =
   -0.4052
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See Also

More About
• “Output Functions” on page 9-17
• “Set Options” on page 9-11
• “Iterative Display” on page 9-15
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Troubleshooting and Tips
Here is a list of typical problems and recommendations for dealing with them.

Problem Recommendation
The solution found by fminbnd or
fminsearch does not appear to be a
global minimum.

There is no guarantee that you have a global minimum
unless your problem is continuous and has only one
minimum. Starting the optimization from several
different starting points (or intervals in the case of
fminbnd) can help to locate the global minimum or
verify that there is only one minimum. Use different
methods, where possible, to verify results.

Sometimes an optimization problem has
values of x for which it is impossible to
evaluate f.

Modify your function to include a penalty function to
give a large positive value to f when infeasibility is
encountered.

The minimization routine appears to
enter an infinite loop or returns a
solution that is not a minimum (or not a
zero in the case of fzero).

Your objective function (fun) may be returning NaN or
complex values. The optimization routines expect only
real numbers to be returned. Any other values can
cause unexpected results. To determine whether there
are NaN or complex values, set

options = optimset('FunValCheck', 'on')

and call the optimization function with options as an
input argument. This setting displays an error when
the objective function returns NaN or complex values.

Optimization problems can take many iterations to converge. Most optimization
problems benefit from good starting guesses. Providing good starting guesses improves
the execution efficiency and helps locate the global minimum instead of a local minimum.

Sometimes you can solve a complicated problem using an evolutionary approach. First,
solve problems with a smaller number of independent variables. Use solutions from these
simpler problems as starting points for more complicated problems by using an
appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the early
stages of an optimization problem can also reduce computation time. Such an approach
often produces superior results by avoiding local minima.
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See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
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Parameterizing Functions
In this section...
“Overview” on page 10-2
“Parameterizing Using Nested Functions” on page 10-2
“Parameterizing Using Anonymous Functions” on page 10-3

Overview
This topic explains how to store or access extra parameters for mathematical functions
that you pass to MATLAB function functions, such as fzero or integral.

MATLAB function functions evaluate mathematical expressions over a range of values.
They are called function functions because they are functions that accept a function
handle (a pointer to a function) as an input. Each of these functions expects that your
objective function has a specific number of input variables. For example, fzero and
integral accept handles to functions that have exactly one input variable.

Suppose you want to find the zero of the cubic polynomial x3 + bx + c for different values
of the coefficients b and c. Although you could create a function that accepts three input
variables (x, b, and c), you cannot pass a function handle that requires all three of those
inputs to fzero. However, you can take advantage of properties of anonymous or nested
functions to define values for additional inputs.

Parameterizing Using Nested Functions
One approach for defining parameters is to use a nested function—a function completely
contained within another function in a program file. For this example, create a file
named findzero.m that contains a parent function findzero and a nested function
poly:

function y = findzero(b,c,x0)

y = fzero(@poly,x0);

   function y = poly(x)
   y = x^3 + b*x + c;
   end
end
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The nested function defines the cubic polynomial with one input variable, x. The parent
function accepts the parameters b and c as input values. The reason to nest poly within
findzero is that nested functions share the workspace of their parent functions.
Therefore, the poly function can access the values of b and c that you pass to findzero.

To find a zero of the polynomial with b = 2 and c = 3.5, using the starting point x0 =
0, you can call findzero from the command line:

x = findzero(2,3.5,0)

x =
   -1.0945

Parameterizing Using Anonymous Functions
Another approach for accessing extra parameters is to use an anonymous function.
Anonymous functions are functions that you can define in a single command, without
creating a separate program file. They can use any variables that are available in the
current workspace.

For example, create a handle to an anonymous function that describes the cubic
polynomial, and find the zero:
b = 2;
c = 3.5;
cubicpoly = @(x) x^3 + b*x + c;
x = fzero(cubicpoly,0)

x =
   -1.0945

Variable cubicpoly is a function handle for an anonymous function that has one input,
x. Inputs for anonymous functions appear in parentheses immediately following the @
symbol that creates the function handle. Because b and c are in the workspace when you
create cubicpoly, the anonymous function does not require inputs for those coefficients.

You do not need to create an intermediate variable, cubicpoly, for the anonymous
function. Instead, you can include the entire definition of the function handle within the
call to fzero:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0)
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x =
   -1.0945

You also can use anonymous functions to call more complicated objective functions that
you define in a function file. For example, suppose you have a file named cubicpoly.m
with this function definition:

function y = cubicpoly(x,b,c)
y = x^3 + b*x + c;
end

At the command line, define b and c, and then call fzero with an anonymous function
that invokes cubicpoly:

b = 2;
c = 3.5;
x = fzero(@(x) cubicpoly(x,b,c),0)

x =
   -1.0945

Note To change the values of the parameters, you must create a new anonymous
function. For example:

b = 10;
c = 25;
x = fzero(@(x) x^3 + b*x + c,0);

See Also

More About
• “Create Function Handle”
• “Nested Functions”
• “Anonymous Functions”
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Ordinary Differential Equations (ODEs)

• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-14
• “ODE Event Location” on page 11-16
• “Solve Nonstiff ODEs” on page 11-24
• “Solve Stiff ODEs” on page 11-29
• “Solve Differential Algebraic Equations (DAEs)” on page 11-37
• “Nonnegative ODE Solution” on page 11-44
• “Troubleshoot Common ODE Problems” on page 11-49
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Choose an ODE Solver

In this section...
“Ordinary Differential Equations” on page 11-2
“Types of ODEs” on page 11-3
“Systems of ODEs” on page 11-3
“Higher-Order ODEs” on page 11-4
“Complex ODEs” on page 11-5
“Basic Solver Selection” on page 11-6
“Summary of ODE Examples and Files” on page 11-9

Ordinary Differential Equations

An ordinary differential equation (ODE) contains one or more derivatives of a dependent
variable, y, with respect to a single independent variable, t, usually referred to as time.

The notation used here for representing derivatives of y with respect to t is y’  for a first

derivative, y’’  for a second derivative, and so on. The order of the ODE is equal to the
highest-order derivative of y that appears in the equation.

For example, this is a second order ODE:
y y’’ = 9

In an initial value problem, the ODE is solved by starting from an initial state. Using the

initial condition, y
0 , as well as a period of time over which the answer is to be obtained,

t tf0 ,( ) , the solution is obtained iteratively. At each step the solver applies a particular
algorithm to the results of previous steps. At the first such step, the initial condition
provides the necessary information that allows the integration to proceed. The final

result is that the ODE solver returns a vector of time steps t t t t t f= È
Î

˘
˚0 1 2, , ,...,  as well as

the corresponding solution at each step y y y y yf= È
Î

˘
˚0 1 2, , ,..., .
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Types of ODEs

The ODE solvers in MATLAB solve these types of first-order ODEs:

•
Explicit ODEs of the form y f t y’ ,= ( ) .

•
Linearly implicit ODEs of the form M t y y f t y, ’ ,( ) = ( ) , where M t y,( )  is a
nonsingular mass matrix. The mass matrix can be time- or state-dependent, or it can
be a constant matrix. Linearly implicit ODEs involve linear combinations of the first
derivative of y, which are encoded in the mass matrix.

Linearly implicit ODEs can always be transformed to an explicit form,

y M t y f t y’ , ,= ( ) ( )-1 . However, specifying the mass matrix directly to the ODE solver
avoids this transformation, which is inconvenient and can be computationally
expensive.

• If some components of y’  are missing, then the equations are called differential
algebraic equations, or DAEs, and the system of DAEs contains some algebraic
variables. Algebraic variables are dependent variables whose derivatives do not
appear in the equations. A system of DAEs can be rewritten as an equivalent system
of first-order ODEs by taking derivatives of the equations to eliminate the algebraic
variables. The number of derivatives needed to rewrite a DAE as an ODE is called the
differential index. The ode15s and ode23t solvers can solve index-1 DAEs.

•
Fully implicit ODEs of the form f t y y, , ’( ) = 0 . Fully implicit ODEs cannot be
rewritten in an explicit form, and might also contain some algebraic variables. The
ode15i solver is designed for fully implicit problems, including index-1 DAEs.

You can supply additional information to the solver for some types of problems by using
the odeset function to create an options structure.

Systems of ODEs

You can specify any number of coupled ODE equations to solve, and in principle the
number of equations is only limited by available computer memory. If the system of
equations has n equations,
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then the function that encodes the equations returns a vector with n elements,

corresponding to the values for y y y
n

’ , ’ , , ’1 2 … . For example, consider the system of two
equations

y y

y y y

’

’ .

1 2

2 1 2 2

=

= -

Ï
Ì
Ó

A function that encodes these equations is

function dy = myODE(t,y)
dy(1) = y(2);
dy(2) = y(1)*y(2)-2;

Higher-Order ODEs

The MATLAB ODE solvers only solve first-order equations. You must rewrite higher-
order ODEs as an equivalent system of first-order equations using the generic
substitutions
y y

y y

y y

y y
n

n

1

2

3

1

=

=

=

=
-

’

’’

.
( )

M

The result of these substitutions is a system of n first-order equations
y y

y y

y f t y y yn n

’

’

’ , , ,..., .

1 2

2 3

1 2

=

=

= ( )

Ï

Ì

Ô
Ô

Ó

Ô
Ô

M
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For example, consider the third-order ODE
y y y’’’ ’’ .- + =1 0

Using the substitutions
y y

y y

y y

1

2

3

=

=

=

’

’’

results in the equivalent first-order system
y y

y y

y y y

’

’

’ .

1 2

2 3

3 1 3 1

=

=

= -

Ï

Ì
Ô

Ó
Ô

The code for this system of equations is then

function dydt = f(t,y)
dydt(1) = y(2);
dydt(2) = y(3);
dydt(3) = y(1)*y(3)-1;

Complex ODEs

Consider the complex ODE equation
y f t y’ , ,= ( )

where y y iy= +
1 2 . To solve it, separate the real and imaginary parts into different

solution components, then recombine the results at the end. Conceptually, this looks like
yv y y

fv f t y f t y

= ( ) ( )ÈÎ ˘̊

= ( )( ) ( )( )ÈÎ ˘̊

Real Imag

Real Imag, , .

For example, if the ODE is y yt i’ = + 2 , then you can represent the equation using a
function file.
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function f = complexf(t,y)
% Define function that takes and returns complex values
f = y.*t + 2*i;

Then, the code to separate the real and imaginary parts is

function fv = imaginaryODE(t,yv)
% Construct y from the real and imaginary components
y = yv(1) + i*yv(2);            

% Evaluate the function
yp = complexf(t,y);             

% Return real and imaginary in separate components
fv = [real(yp); imag(yp)];      

When you run a solver to obtain the solution, the initial condition y0 is also separated
into real and imaginary parts to provide an initial condition for each solution component.

y0 = 1+i;
yv0 = [real(y0); imag(y0)];
tspan = [0 2];
[t,yv] = ode45(@imaginaryODE, tspan, yv0);

Once you obtain the solution, combine the real and imaginary components together to
obtain the final result.

y = yv(:,1) + i*yv(:,2);

Basic Solver Selection
ode45 performs well with most ODE problems and should generally be your first choice
of solver. However, ode23 and ode113 can be more efficient than ode45 for problems
with looser or tighter accuracy requirements.

Some ODE problems exhibit stiffness, or difficulty in evaluation. Stiffness is a term that
defies a precise definition, but in general, stiffness occurs when there is a difference in
scaling somewhere in the problem. For example, if an ODE has two solution components
that vary on drastically different time scales, then the equation might be stiff. You can
identify a problem as stiff if nonstiff solvers (such as ode45) are unable to solve the
problem or are extremely slow. If you observe that a nonstiff solver is very slow, try using
a stiff solver such as ode15s instead. When using a stiff solver, you can improve
reliability and efficiency by supplying the Jacobian matrix or its sparsity pattern.
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This table provides general guidelines on when to use each of the different solvers.
Solver Problem Type Accuracy When to Use
ode45

Nonstiff

Medium
Most of the time.
ode45 should be the
first solver you try.

ode23

Low

ode23 can be more
efficient
than ode45 at
problems with crude
tolerances, or in the
presence of moderate
stiffness.

ode113

Low to High

ode113 can be more
efficient
than ode45 at
problems with
stringent error
tolerances, or when
the ODE function is
expensive to
evaluate.

ode15s

Stiff Low to Medium

Try ode15s when od
e45 fails or is
inefficient and you
suspect that the
problem is stiff. Also
use ode15s when
solving differential
algebraic equations
(DAEs).
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Solver Problem Type Accuracy When to Use
ode23s

Low

ode23s can be more
efficient
than ode15s at
problems with crude
error tolerances. It
can solve some stiff
problems for
which ode15s is not
effective.

ode23s computes
the Jacobian in each
step, so it is
beneficial to provide
the Jacobian via
odeset to maximize
efficiency and
accuracy.

If there is a mass
matrix, it must be
constant.

ode23t

Low

Use ode23t if the
problem is only
moderately stiff and
you need a solution
without numerical
damping. 

ode23t can solve
differential algebraic
equations (DAEs).

11 Ordinary Differential Equations (ODEs)
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Solver Problem Type Accuracy When to Use
ode23tb

Low

Like ode23s, the
ode23tb solver
might be more
efficient
than ode15s at
problems with crude
error tolerances.

ode15i

Fully implicit Low

Use ode15i for fully
implicit problems
f(t,y,y’) = 0 and for
differential algebraic
equations (DAEs) of
index 1.

For details and further recommendations about when to use each solver, see [5].

Summary of ODE Examples and Files

There are several example files available that serve as excellent starting points for most
ODE problems. To run the Differential Equations Examples app, which lets you
easily explore and run examples, type

odeexamples

To open an individual example file for editing, type

edit exampleFileName.m

To run an example, type

exampleFileName

This table contains a list of the available ODE and DAE example files as well as the
solvers and options they use. Links are included for the subset of examples that are also
published directly in the documentation.

 Choose an ODE Solver
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Examp
le File

Solver
Used

Options Specified Description Documentation Link

amp1d
ae

ode23t
• 'Mass'

Stiff DAE — electrical
circuit with constant,
singular mass matrix

“Solve Stiff Differential
Algebraic Equation”

ballo
de

ode23 • 'Events'
• 'OutputFcn'
• 'OutputSel'
• 'Refine'
• 'InitialSte

p'
• 'MaxStep'

Simple event location —
bouncing ball

“ODE Event Location” on
page 11-16

baton
ode

ode45
• 'Mass'

ODE with time- and
state-dependent mass
matrix — motion of a
baton

—

bruss
ode

ode15s • 'JPattern'
• 'Vectorized

'

Stiff large problem —
diffusion in a chemical
reaction (the Brusselator)

“Solve Stiff ODEs” on
page 11-29

burge
rsode

ode15s • 'Mass'
• 'MStateDepe

ndence'
• 'JPattern'
• 'MvPattern'
• 'RelTol'
• 'AbsTol'

ODE with strongly state-
dependent mass matrix
— Burgers' equation
solved using a moving
mesh technique

—

fem1o
de

ode15s • 'Mass'
• 'MStateDepe

ndence'
• 'Jacobian'

Stiff problem with a time-
dependent mass matrix
— finite element method

—

11 Ordinary Differential Equations (ODEs)
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Examp
le File

Solver
Used

Options Specified Description Documentation Link

fem2o
de

ode23s
• 'Mass'

Stiff problem with a
constant mass matrix —
finite element method

—

hb1od
e

ode15s
—

Stiff ODE problem solved
on a very long interval —
Robertson chemical
reaction

—

hb1da
e

ode15s • 'Mass'
• 'RelTol'
• 'AbsTol'
• 'Vectorized

'

Stiff, linearly implicit
DAE from a conservation
law — Robertson
chemical reaction

“Solve Robertson
Problem as Semi-Explicit
Differential Algebraic
Equations (DAEs)”

ihb1d
ae

ode15i • 'RelTol'
• 'AbsTol'
• 'Jacobian'

Stiff, fully implicit DAE
— Robertson chemical
reaction

“Solve Robertson
Problem as Implicit
Differential Algebraic
Equations (DAEs)”

iburg
ersod
e

ode15i • 'RelTol'
• 'AbsTol'
• 'Jacobian'
• 'JPattern'

Implicit ODE system —
Burgers’ equation

—

kneeo
de

ode15s • 'NonNegativ
e'

The “knee problem” with
nonnegativity constraints

“Nonnegative ODE
Solution” on page 11-44

orbit
ode

ode45 • 'RelTol'
• 'AbsTol'
• 'Events'
• 'OutputFcn'

Advanced event location
— restricted three body
problem

“ODE Event Location” on
page 11-16

rigid
ode

ode45
—

Nonstiff problem — Euler
equations of a rigid body
without external forces

“Solve Nonstiff ODEs” on
page 11-24
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Examp
le File

Solver
Used

Options Specified Description Documentation Link

vdpod
e

ode15s
• 'Jacobian'

Parameterizable van der
Pol equation (stiff for
large μ)

“Solve Stiff ODEs” on
page 11-29
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External Websites
• Ordinary Differential Equations
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Summary of ODE Options
Solving ODEs frequently requires fine-tuning parameters, adjusting error tolerances, or
passing additional information to the solver. Use the odeset function to create an
options structure that you then pass to the solver. The odeget function queries the value
of an option in an existing structure, which can be used to dynamically change option
values based on conditions.

This table summarizes the compatibility of each option with the different solvers.
Option ode45 ode23 ode113 ode15s ode23s ode23t ode23t

b
ode15i

RelTol
AbsTol
NormCo
ntrol

√ √ √ √ √ √ √ √

Output
Fcn
Output
Sel
Refine
Stats

√ √ √ √ √ √ √ √

NonNeg
ative √ √ √ √ * — √ * √ * —

Events √ √ √ √ √ √ √ √**
MaxSte
p
Initia
lStep

√ √ √ √ √ √ √ √

Jacobi
an
JPatte
rn
Vector
ized

— — — √ √ √ √ √
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Option ode45 ode23 ode113 ode15s ode23s ode23t ode23t
b

ode15i

Mass
MState
Depend
ence
MvPatt
ern
MassSi
ngular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

—
—
—
—

Initia
lSlope — — — √ — √ — —

MaxOrd
er
BDF

— — — √ — — — √
—

Note * — You can use the NonNegative parameter with ode15s, ode23t, and ode23tb
only for those problems in which there is no mass matrix.

** — The events function for ode15i must accept a third input argument for yp.

See Also
odeget | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “ODE Event Location” on page 11-16
• “Nonnegative ODE Solution” on page 11-44
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ODE Event Location
In this section...
“What is Event Location?” on page 11-16
“Writing an Event Function” on page 11-16
“Event Information” on page 11-17
“Limitations” on page 11-18
“Simple Event Location: A Bouncing Ball” on page 11-18
“Advanced Event Location: Restricted Three Body Problem” on page 11-19

What is Event Location?

Part of the difficulty in solving some systems of ODEs is determining an appropriate
time to stop the solution. The final time in the interval of integration might be defined by
a specific event and not by a number. An example is an apple falling from a tree. The
ODE solver should stop once the apple hits the ground, but you might not know when
that event would occur beforehand. Similarly, some problems involve events that do not
terminate the solution. An example is a moon orbiting a planet. In this case you might
not want to stop the integration early, but you still want to detect each time the moon
completes one period around the larger body.

Use event functions to detect when certain events occur during the solution of an ODE.
Event functions take an expression that you specify, and detect an event when that
expression is equal to zero. They can also signal the ODE solver to halt integration when
they detect an event.

Writing an Event Function

Use the 'Events' option of the odeset function to specify an event function. The event
function must have the general form

[value,isterminal,direction] = myEventsFcn(t,y)

In the case of ode15i, the event function must also accept a third input argument for yp.

The output arguments value, isterminal, and direction are vectors whose ith
element corresponds to the ith event:

11 Ordinary Differential Equations (ODEs)

11-16



• value(i) is a mathematical expression describing the ith event. An event occurs
when value(i) is equal to zero.

• isterminal(i) = 1 if the integration is to terminate when the ith event occurs.
Otherwise, it is 0.

• direction(i) = 0 if all zeros are to be located (the default). A value of +1 locates
only zeros where the event function is increasing, and -1 locates only zeros where the
event function is decreasing. Specify direction = [] to use the default value of 0
for all events.

Again, consider the case of an apple falling from a tree. The ODE that represents the
falling body is
y y’’ ’ ,= - +1 2

with the initial conditions y 0 1( ) =  and y’ 0 0( ) = . You can use an event function to

determine when y t( ) = 0 , which is when the apple hits the ground. For this problem, an
event function that detects when the apple hits the ground is

function [position,isterminal,direction] = appleEventsFcn(t,y)
position = y(1); % The value that we want to be zero
isterminal = 1;  % Halt integration 
direction = 0;   % The zero can be approached from either direction

Event Information

If you specify an events function, then call the ODE solver with three extra output
arguments, as

[t,y,te,ye,ie] = odeXY(odefun,tspan,y0,options)

The three additional outputs returned by the solver correspond to the detected events:

• te is a column vector of the times at which events occurred.
• ye contains the solution value at each of the event times in te.
• ie contains indices into the vector returned by the event function. The values indicate

which event the solver detected.

Alternatively, you can call the solver with a single output, as
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sol = odeXY(odefun,tspan,y0,options)

In this case, the event information is stored in the structure as sol.te, sol.ye, and
sol.ie.

Limitations

The root-finding mechanism employed by the ODE solver in conjunction with the event
function has these limitations:

• If a terminal event occurs during the first step of the integration, then the solver
registers the event as nonterminal and continues integrating.

• If more than one terminal event occurs during the first step, then only the first event
registers and the solver continues integrating.

• Zeros are determined by sign crossings between steps. Therefore, zeros of functions
with an even number of crossings between steps can be missed.

If the solver steps past events, try reducing RelTol and AbsTol to improve accuracy.
Alternatively, set MaxStep to place an upper bound on the step size. Adjusting tspan
does not change the steps taken by the solver.

Simple Event Location: A Bouncing Ball

This example shows how to write a simple event function for use with an ODE solver.
The example file ballode models the motion of a bouncing ball. The events function
halts the integration each time the ball bounces, and the integration then restarts with
new initial conditions. As the ball bounces, the integration stops and restarts several
times.

The equations for the bouncing ball are

A ball bounce occurs when the height of the ball  is equal to zero after decreasing.
An events function that codes this behavior is

function [value,isterminal,direction] = bounceEvents(t,y)
value = y(1);     % Detect height = 0
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isterminal = 1;   % Stop the integration
direction = -1;   % Negative direction only

Type ballode to run the example and illustrate the use of an events function to
simulate the bouncing of a ball.

ballode

Advanced Event Location: Restricted Three Body Problem

This example shows how to use the directional components of an event function. The
example file orbitode simulates a restricted three body problem where one body is
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orbiting two much larger bodies. The events function determines the points in the orbit
where the orbiting body is closest and farthest away. Since the value of the events
function is the same at the closest and farthest points of the orbit, the direction of zero
crossing is what distinguishes them.

The equations for the restricted three body problem are

where

The first two solution components are coordinates of the body of infinitesimal mass, so
plotting one against the other gives the orbit of the body.

The events function nested in orbitode.m searches for two events. One event locates
the point of maximum distance from the starting point, and the other locates the point
where the spaceship returns to the starting point. The events are located accurately,
even though the step sizes used by the integrator are not determined by the locations of
the events. In this example, the ability to specify the direction of the zero crossing is
critical. Both the point of return to the starting point and the point of maximum distance
from the starting point have the same event values, and the direction of the crossing is
used to distinguish them. An events function that codes this behavior is

function [value,isterminal,direction] = orbitEvents(t,y)
% dDSQdt is the derivative of the equation for current distance. Local
% minimum/maximum occurs when this value is zero.
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4)); 
value = [dDSQdt; dDSQdt];  
isterminal = [1;  0];         % stop at local minimum
direction  = [1; -1];         % [local minimum, local maximum]
end
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Type orbitode to run the example.

orbitode

This is an example of event location where the ability to
specify the direction of the zero crossing is critical.  Both
the point of return to the initial point and the point of
maximum distance have the same event function value, and the
direction of the crossing is used to distinguish them.

Calling ODE45 with event functions active...

Note that the step sizes used by the integrator are NOT
determined by the location of the events, and the events are
still located accurately.
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See Also
odeget | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-14
• “Parameterizing Functions” on page 10-2
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Solve Nonstiff ODEs
This page contains two examples of solving nonstiff ordinary differential equations using
ode45. MATLAB® has three solvers for nonstiff ODEs.

• ode45
• ode23
• ode113

For most nonstiff problems, ode45 performs best. However, ode23 is recommended for
problems that permit a slightly cruder error tolerance or in the presence of moderate
stiffness. Likewise, ode113 can be more efficient than ode45 for problems with stringent
error tolerances.

If the nonstiff solvers take a long time to solve the problem or consistently fail the
integration, then the problem might be stiff. See “Solve Stiff ODEs” on page 11-29 for
more information.

Example: Nonstiff van der Pol Equation

The van der Pol equation is a second order ODE

where  is a scalar parameter. Rewrite this equation as a system of first-order ODEs
by making the substitution . The resulting system of first-order ODEs is

The system of ODEs must be coded into a function file that the ODE solver can use. The
general functional signature of an ODE function is

  dydt = odefun(t,y)

That is, the function must accept both t and y as inputs, even if it does not use t for any
computations.

The function file vdp1.m codes the van der Pol equation using . The variables 
and  are represented by y(1) and y(2), and the two-element column vector dydt
contains the expressions for  and .
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function dydt = vdp1(t,y)
%VDP1  Evaluate the van der Pol ODEs for mu = 1
%
%   See also ODE113, ODE23, ODE45.

%   Jacek Kierzenka and Lawrence F. Shampine
%   Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode45 function on the time interval [0 20] with initial values
[2 0]. The output is a column vector of time points t and a solution array y. Each row
in y corresponds to a time returned in the corresponding row of t. The first column of y
corresponds to , and the second column to .

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

Plot the solutions for  and  against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) using ODE45');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')

 Solve Nonstiff ODEs

11-25



The vdpode function solves the same problem, but it accepts a user-specified value for .
The van der Pol equations become stiff as  increases. For example, with the value

 you need to use a stiff solver such as ode15s to solve the system.

Example: Nonstiff Euler Equations

The Euler equations for a rigid body without external forces are a standard test problem
for ODE solvers intended for nonstiff problems.

The equations are
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The function file rigidode defines and solves this first-order system of equations over
the time interval [0 12], using the vector of initial conditions [0; 1; 1] corresponding
to the initial values of , , and . The local function f(t,y) encodes the system of
equations.

rigidode calls ode45 with no output arguments, so the solver uses the default output
function odeplot to automatically plot the solution points after each step.

function rigidode
%RIGIDODE  Euler equations of a rigid body without external forces.
%   A standard test problem for non-stiff solvers proposed by Krogh.  The
%   analytical solutions are Jacobian elliptic functions, accessible in
%   MATLAB.  The interval here is about 1.5 periods; it is that for which
%   solutions are plotted on p. 243 of Shampine and Gordon.
%
%   L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary
%   Differential Equations, W.H. Freeman & Co., 1975.
%
%   See also ODE45, ODE23, ODE113, FUNCTION_HANDLE.

%   Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
%   Copyright 1984-2014 The MathWorks, Inc.

tspan = [0 12];
y0 = [0; 1; 1];

% solve the problem using ODE45
figure;
ode45(@f,tspan,y0);

% --------------------------------------------------------------------------

function dydt = f(t,y)
dydt = [    y(2)*y(3)
   -y(1)*y(3)
   -0.51*y(1)*y(2) ];

Solve the nonstiff Euler equations by calling the rigidode function.
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rigidode
title('Solution of Rigid Body w/o External Forces using ODE45')
legend('y_1','y_2','y_3','Location','Best')

See Also
ode113 | ode23 | ode45

More About
• “Choose an ODE Solver” on page 11-2
• “Parameterizing Functions” on page 10-2
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Solve Stiff ODEs
This page contains two examples of solving stiff ordinary differential equations using
ode15s. MATLAB® has four solvers designed for stiff ODEs.

• ode15s
• ode23s
• ode23t
• ode23tb

For most stiff problems, ode15s performs best. However, ode23s, ode23t, and ode23tb
can be more efficient if the problem permits a crude error tolerance.

What is a Stiff ODE?

For some ODE problems, the step size taken by the solver is forced down to an
unreasonably small level in comparison to the interval of integration, even in a region
where the solution curve is smooth. These step sizes can be so small that traversing a
short time interval might require millions of evaluations. This can lead to the solver
failing the integration, but even if it succeeds it will take a very long time to do so.

Equations that cause this behavior in ODE solvers are said to be stiff. The problem that
stiff ODEs pose is that explicit solvers (such as ode45) are untenably slow in achieving a
solution. This is why ode45 is classified as a nonstiff solver along with ode23 and
ode113.

Solvers that are designed for stiff ODEs, known as stiff solvers, typically do more work
per step. The pay-off is that they are able to take much larger steps, and have improved
numerical stability compared to the nonstiff solvers.

Solver Options

For stiff problems, specifying the Jacobian matrix using odeset is particularly
important. Stiff solvers use the Jacobian matrix  to estimate the local behavior of
the ODE as the integration proceeds, so supplying the Jacobian matrix (or, for large
sparse systems, its sparsity pattern) is critical for efficiency and reliability. Use the
Jacobian, JPattern, or Vectorized options of odeset to specify information about
the Jacobian. If you do not supply the Jacobian then the solver estimates it numerically
using finite differences.
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See odeset for a complete listing of other solver options.

Example: Stiff van der Pol Equation

The van der Pol equation is a second order ODE

where  is a scalar parameter. When , the resulting system of ODEs is nonstiff
and easily solved using ode45. However, if you increase  to 1000, then the solution
changes dramatically and exhibits oscillation on a much longer time scale.
Approximating the solution of the initial value problem becomes more difficult. Because
this particular problem is stiff, a solver intended for nonstiff problems, such as ode45, is
too inefficient to be practical. Use a stiff solver such as ode15s for this problem instead.

Rewrite the van der Pol equation as a system of first-order ODEs by making the
substitution . The resulting system of first-order ODEs is

The vdp1000 function evaluates the van der Pol equation using .

function dydt = vdp1000(t,y)
%VDP1000  Evaluate the van der Pol ODEs for mu = 1000.
%
%   See also ODE15S, ODE23S, ODE23T, ODE23TB.

%   Jacek Kierzenka and Lawrence F. Shampine
%   Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Use the ode15s function to solve the problem with an initial conditions vector of [2; 0],
over a time interval of [0 3000]. For scaling reasons, plot only the first component of
the solution.
[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-o');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('Time t');
ylabel('Solution y_1');

11 Ordinary Differential Equations (ODEs)

11-30



The vdpode function also solves the same problem, but it accepts a user-specified value
for . The equations become increasingly stiff as  increases.

Example: Sparse Brusselator System

The classic Brusselator system of equations is potentially large, stiff, and sparse. The
Brusselator system models diffusion in a chemical reaction, and is represented by a
system of equations involving , , , and .
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The function file brussode solves this set of equations on the time interval [0,10] with
. The initial conditions are

where  for . Therefore, there are  equations in the system,
but the Jacobian  is a banded matrix with a constant width of 5 if the equations
are ordered as . As  increases, the problem becomes increasingly stiff,
and the Jacobian becomes increasingly sparse.

The function call brussode(N), for , specifies a value for N in the system of
equations, corresponding to the number of grid points. By default, brussode uses

.

brussode contains a few subfunctions:

• The nested function f(t,y) encodes the system of equations for the Brusselator
problem, returning a vector.

• The local function jpattern(N) returns a sparse matrix of 1s and 0s showing the
locations of nonzeros in the Jacobian. This matrix is assigned to the JPattern field of
the options structure. The ODE solver uses this sparsity pattern to generate the
Jacobian numerically as a sparse matrix. Supplying this sparsity pattern in the
problem significantly reduces the number of function evaluations required to generate
the 2N-by-2N Jacobian, from 2N evaluations to just 4.

function brussode(N)
%BRUSSODE  Stiff problem modelling a chemical reaction (the Brusselator).
%   The parameter N >= 2 is used to specify the number of grid points; the
%   resulting system consists of 2N equations. By default, N is 20.  The
%   problem becomes increasingly stiff and increasingly sparse as N is
%   increased.  The Jacobian for this problem is a sparse constant matrix
%   (banded with bandwidth 5).
%
%   The property 'JPattern' is used to provide the solver with a sparse
%   matrix of 1's and 0's showing the locations of nonzeros in the Jacobian
%   df/dy.  By default, the stiff solvers of the ODE Suite generate Jacobians
%   numerically as full matrices.  However, when a sparsity pattern is
%   provided, the solver uses it to generate the Jacobian numerically as a
%   sparse matrix.  Providing a sparsity pattern can significantly reduce the
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%   number of function evaluations required to generate the Jacobian and can
%   accelerate integration.  For the BRUSSODE problem, only 4 evaluations of
%   the function are needed to compute the 2N x 2N Jacobian matrix.
%
%   Setting the 'Vectorized' property indicates the function f is
%   vectorized.
%
%   E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
%   Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin,
%   1991, pp. 5-8.
%
%   See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, FUNCTION_HANDLE.

%   Mark W. Reichelt and Lawrence F. Shampine, 8-30-94
%   Copyright 1984-2014 The MathWorks, Inc.

% Problem parameter, shared with the nested function.
if nargin<1
   N = 20;
end

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);
x = (1:N)/(N+1);
figure;
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);

% -------------------------------------------------------------------------
% Nested function -- N is provided by the outer function.
%

   function dydt = f(t,y)
      % Derivative function
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      c = 0.02 * (N+1)^2;
      dydt = zeros(2*N,size(y,2));      % preallocate dy/dt
      
      % Evaluate the 2 components of the function at one edge of the grid
      % (with edge conditions).
      i = 1;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(1-2*y(i,:)+y(i+2,:));
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(3-2*y(i+1,:)+y(i+3,:));
      
      % Evaluate the 2 components of the function at all interior grid points.
      i = 3:2:2*N-3;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
         c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
         c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
      
      % Evaluate the 2 components of the function at the other edge of the grid
      % (with edge conditions).
      i = 2*N-1;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(y(i-2,:)-2*y(i,:)+1);
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(y(i-1,:)-2*y(i+1,:)+3);
   end
% -------------------------------------------------------------------------

end  % brussode

% ---------------------------------------------------------------------------
% Subfunction -- the sparsity pattern
%

function S = jpattern(N)
% Jacobian sparsity pattern
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end
% ---------------------------------------------------------------------------

Solve the Brusselator system for  by running the function brussode.

brussode
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Solve the system for  by specifying an input to brussode.

brussode(50)
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See Also
ode15s | ode23s | ode23t | ode23tb

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-14
• “Parameterizing Functions” on page 10-2
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Solve Differential Algebraic Equations (DAEs)
In this section...
“What is a Differential Algebraic Equation?” on page 11-37
“Consistent Initial Conditions” on page 11-38
“Differential Index” on page 11-39
“Solve Robertson Problem as Semi-Explicit Differential Algebraic Equations (DAEs)” on
page 11-40

What is a Differential Algebraic Equation?

Differential algebraic equations are a type of differential equation where one or more
derivatives of dependent variables are not present in the equations. Variables that
appear in the equations without their derivative are called algebraic, and the presence of
algebraic variables means that you cannot write down the equations in the explicit form

y f t y’ ,= ( ) . Instead, you can solve DAEs with these forms:

• The ode15s and ode23t solvers can solve index-1 linearly implicit problems with a

singular mass matrix M t y y f t y, ’ ,( ) = ( ) , including semi-explicit DAEs of the form
y f t y z

g t y z

’ , ,

, , .

= ( )

= ( )0

In this form, the presence of algebraic variables leads to a singular mass matrix, since
there are one or more zeros on the main diagonal.
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By default, solvers automatically test the singularity of the mass matrix to detect
DAE systems. If you know about singularity ahead of time then you can set the
MassSingular option of odeset to 'yes'. With DAEs, you can also provide the

solver with a guess of the initial conditions for y’0  using the InitialSlope property
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of odeset. This is in addition to specifying the usual initial conditions for y
0  in the

call to the solver.
• The ode15i solver can solve more general DAEs in the fully implicit form

f t y y, , ’ .( ) = 0

In the fully implicit form, the presence of algebraic variables leads to a singular
Jacobian matrix. This is because at least one of the columns in the matrix is
guaranteed to contain all zeros, since the derivative of that variable does not appear
in the equations.
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The ode15i solver requires that you specify initial conditions for both y’0  and y
0 .

Also, unlike the other ODE solvers, ode15i requires the function encoding the
equations to accept an extra input: odefun(t,y,yp).

DAEs arise in a wide variety of systems because physical conservation laws often have

forms like x y z+ + = 0 . If x, x', y, and y' are defined explicitly in the equations, then
this conservation equation is sufficient to solve for z without having an expression for z'.

Consistent Initial Conditions

When you are solving a DAE, you can specify initial conditions for both y’0  and y
0 . The

ode15i solver requires both initial conditions to be specified as input arguments. For the

ode15s and ode23t solvers, the initial condition for y’0  is optional (but can be specified
using the InitialSlope option of odeset). In both cases, it is possible that the initial
conditions you specify do not agree with the equations you are trying to solve. Initial
conditions that conflict with one another are called inconsistent. The treatment of the
initial conditions varies by solver:
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• ode15s and ode23t — If you do not specify an initial condition for y’0 , then the
solver automatically computes consistent initial conditions based on the initial

condition you provide for y
0 . If you specify an inconsistent initial condition for y’0 ,

then the solver treats the values as guesses, attempts to compute consistent values
close to the guesses, and continues on to solve the problem.

• ode15i — The initial conditions you supply to the solver must be consistent, and
ode15i does not check the supplied values for consistency. The helper function decic
computes consistent initial conditions for this purpose.

Differential Index

DAEs are characterized by their differential index, which is a measure of their
singularity. By differentiating equations you can eliminate algebraic variables, and if you
do this enough times then the equations take the form of a system of explicit ODEs. The
differential index of a system of DAEs is the number of derivatives you must take to
express the system as an equivalent system of explicit ODEs. Thus, ODEs have a
differential index of 0.

An example of an index-1 DAE is
y t k t( ) = ( ) .

For this equation, you can take a single derivative to obtain the explicit ODE form
y k t’ ’ .= ( )

An example of an index-2 DAE is
y y

k t y

’

.

1 2

10

=

= ( ) -

These equations require two derivatives to be rewritten in the explicit ODE form
y k t

y k t

’ ’

’ ’’ .

1

2

= ( )

= ( )

The ode15s and ode23t solvers only solve DAEs of index 1. If the index of your
equations is 2 or higher, then you need to rewrite the equations as an equivalent system
of index-1 DAEs. It is always possible to take derivatives and rewrite a DAE system as
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an equivalent system of index-1 DAEs. Be aware that if you replace algebraic equations
with their derivatives, then you might have removed some constraints. If the equations
no longer include the original constraints, then the numerical solution can drift.

If you have Symbolic Math Toolbox, then see “Step 3. Check and Reduce Differential
Index” (Symbolic Math Toolbox) for more information.

Solve Robertson Problem as Semi-Explicit Differential Algebraic
Equations (DAEs)
This example reformulates a system of ODEs as a system of differential algebraic
equations (DAEs). The Robertson problem found in hb1ode.m is a classic test problem for
programs that solve stiff ODEs. The system of equations is

hb1ode solves this system of ODEs to steady state with the initial conditions ,
, and . But the equations also satisfy a linear conservation law,

In terms of the solution and initial conditions, the conservation law is

The system of equations can be rewritten as a system of DAEs by using the conservation
law to determine the state of . This reformulates the problem as the DAE system

The differential index of this system is 1, since only a single derivative of  is required to
make this a system of ODEs. Therefore, no further transformations are required before
solving the system.

The function robertsdae encodes this DAE system. Save robertsdae.m in your
current folder to run the example.
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function out = robertsdae(t,y)
out = [-0.04*y(1) + 1e4*y(2).*y(3)
   0.04*y(1) - 1e4*y(2).*y(3) - 3e7*y(2).^2
   y(1) + y(2) + y(3) - 1 ];

The full example code for this formulation of the Robertson problem is available in
hb1dae.m.

Solve the DAE system using ode15s. Consistent initial conditions for y0 are obvious
based on the conservation law. Use odeset to set the options:

• Use a constant mass matrix to represent the left hand side of the system of equations.

• Set the relative error tolerance to 1e-4.
• Use an absolute tolerance of 1e-10 for the second solution component, since the scale

varies dramatically from the other components.
• Leave the 'MassSingular' option at its default value 'maybe' to test the automatic

detection of a DAE.

y0 = [1; 0; 0];
tspan = [0 4*logspace(-6,6)];
M = [1 0 0; 0 1 0; 0 0 0];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6]);
[t,y] = ode15s(@robertsdae,tspan,y0,options);

Plot the solution.

y(:,2) = 1e4*y(:,2);
semilogx(t,y);
ylabel('1e4 * y(:,2)');
title('Robertson DAE problem with a Conservation Law, solved by ODE15S');
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See Also
ode15i | ode15s | ode23t | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-14
• “Equation Solving” (Symbolic Math Toolbox)
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External Websites
• Solving Index-1 DAEs in MATLAB and Simulink

 See Also
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Nonnegative ODE Solution
This topic shows how to constrain the solution of an ODE to be nonnegative. Imposing
nonnegativity is not always trivial, but sometimes it is necessary due to the physical
interpretation of the equations or due to the nature of the solution. You should only
impose this constraint on the solution when necessary, such as in cases where the
integration fails without it, or where the solution would be inapplicable.

If certain components of the solution must be nonnegative, then use odeset to set the
NonNegative option for the indices of these components. This option is not available for
ode23s, ode15i, or for implicit solvers (ode15s, ode23t, ode23tb) applied to problems
with a mass matrix.

Example: Absolute Value Function

Consider the initial value problem

solved on the interval  with the initial condition . The solution of this
ODE decays to zero. If the solver produces a negative solution value, then it begins to
track the solution of the ODE through this value, and the computation eventually fails as
the calculated solution diverges to . Using the NonNegative option prevents this
integration failure.

Compare the analytic solution of  to a solution of the ODE using ode45 with no
extra options, and to one with the NonNegative option set.

ode = @(t,y) -abs(y);

% Standard solution with |ode45|
options1 = odeset('Refine',1);
[t0,y0] = ode45(ode,[0 40],1,options1);

% Solution with nonnegative constraint
options2 = odeset(options1,'NonNegative',1);
[t1,y1] = ode45(ode,[0 40],1,options2);

% Analytic solution
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t = linspace(0,40,1000);
y = exp(-t);

Plot the three solutions for comparison. Imposing nonnegativity is crucial to keep the
solution from veering off toward .
plot(t,y,'b-',t0,y0,'ro',t1,y1,'k*');
legend('Exact solution','No constraints','Nonnegativity', ...
       'Location','SouthWest')

Example: The Knee Problem

Another example of a problem that requires a nonnegative solution is the knee problem
coded in the example file kneeode. The equation is
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solved on the interval  with the initial condition . The parameter 
generally is taken to satisfy , and this problem uses . The solution
to this ODE approaches  for  and  for . However, computing
the numerical solution with default tolerances shows that the solution follows the

 isocline for the whole interval of integration. Imposing nonnegativity
constraints results in the correct solution.

Solve the knee problem with and without nonnegativity constraints.

epsilon = 1e-6;
y0 = 1;
xspan = [0 2];
odefcn = @(x,y,epsilon) ((1-x)*y - y^2)/epsilon;

% Solve without imposing constraints
[x1,y1] = ode15s(@(x,y) odefcn(x,y,epsilon), xspan, y0);

% Impose a nonnegativity constraint
options = odeset('NonNegative',1);
[x2,y2] = ode15s(@(x,y) odefcn(x,y,epsilon), xspan, y0, options);

Plot the solutions for comparison.

plot(x1,y1,'ro',x2,y2,'b*')
axis([0,2,-1,1])
title('The "knee problem"')
legend('No constraints','Non-negativity')
xlabel('x')
ylabel('y')
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See Also
odeset

More About
• “Choose an ODE Solver” on page 11-2
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• “Summary of ODE Options” on page 11-14
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Troubleshoot Common ODE Problems

Error Tolerances
Question or Problem Answer
How do I choose the error thresholds
RelTol and AbsTol?

RelTol, the relative accuracy tolerance,
controls the number of correct digits in the
computed answer. AbsTol, the absolute
error tolerance, controls the difference
between the computed answer and the true
solution. At each step, the error e in
component i of the solution satisfies

|e(i)| ≤
max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you
want RelTol correct digits in all solution
components, excluding those smaller than
the threshold AbsTol(i). Even if you are
not interested in a component y(i) when it
is small, you might have to specify a value
for AbsTol(i) that is small enough to get
some correct digits in y(i) so that you can
accurately compute more interesting
components.

I want answers that are correct to the
precision of the computer. Why can I not
simply set RelTol to eps?

You can get close to machine precision, but
not that close. The solvers do not allow
RelTol near eps because they try to
approximate a continuous function. At
tolerances comparable to eps, the machine
arithmetic causes all functions to look
discontinuous.
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Question or Problem Answer
How do I tell the solver that I do not care
about getting an accurate answer for one of
the solution components?

You can increase the absolute error
tolerance AbsTol for this solution
component. If the tolerance is bigger than
the solution component, this specifies that
no digits in the component need to be
correct. The solver might have to get some
correct digits in this component to compute
other components accurately, but it
generally handles this automatically.

Problem Scale
Question or Problem Answer
How large a problem can I solve with the
ODE suite?

The primary constraints are memory and
time. At each time step, the solvers for
nonstiff problems allocate vectors of length
n, where n is the number of equations in
the system. The solvers for stiff problems
allocate vectors of length n but also allocate
an n-by-n Jacobian matrix. For these
solvers, it might be advantageous to specify
the Jacobian sparsity pattern using the
JPattern option of odeset.

If the problem is nonstiff, or if you are
using the JPattern option, it might be
possible to solve a problem with thousands
of unknowns. In this case, however, storage
of the result can be problematic. Ask the
solver to evaluate the solution at specific
points only, or call the solver with no
output arguments and use an output
function to monitor the solution.
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Question or Problem Answer
I am solving a very large system, but only
care about a few of the components of y. Is
there any way to avoid storing all of the
elements?

Yes. The OutputFcn option is designed
specifically for this purpose. When you call
the solver with no output arguments, the
solver does not allocate storage to hold the
entire solution history. Instead, the solver
calls OutputFcn(t,y,flag) at each time
step. To keep the history of specific
elements, write an output function that
stores or plots only the elements you care
about.

What is the startup cost of the integration
and how can I reduce it?

The biggest startup cost occurs as the
solver attempts to find a step size
appropriate to the scale of the problem. If
you happen to know an appropriate step
size, use the InitialStep option. For
example, if you repeatedly call the
integrator in an event location loop, the
last step that was taken before the event is
probably scaled correctly for the next
integration. Type edit ballode to see an
example.

The first step size that the integrator takes
is too large, and it misses important
behavior.

You can specify the first step size with the
InitialStep option. The integrator tries
this step size, then reduces it if necessary.
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Solution Components
Question or Problem Answer
The solution does not look like what I
expected.

If your expectations are correct, then
reduce the error tolerances from their
default values. A smaller relative error
tolerance is needed to accurately solve
problems integrated over “long” intervals,
as well as problems that are moderately
unstable.

Check whether there are solution
components that stay smaller than their
absolute error tolerance for some time. If
so, you are not requiring any correct digits
in these components. This might be
acceptable for these components, but
failing to compute them accurately might
degrade the accuracy of other components
that depend on them.

My plots are not smooth enough. Increase the value of Refine from its
default of 4 in ode45 or 1 in the other
solvers. The bigger the value of Refine,
the more output points the solver
generates. Execution speed is not affected
much by the value of Refine.

I am plotting the solution as it is computed
and it looks fine, but the code gets stuck at
some point.

First verify that the ODE function is
smooth near the point where the code gets
stuck. If it is not, then the solver must take
small steps to deal with this. It might help
to break the integration interval into pieces
over which the ODE function is smooth.

If the function is smooth and the code is
taking extremely small steps, you are
probably trying to solve a stiff problem
with a solver not intended for that purpose.
Switch to using one of the stiff solvers
ode15s, ode23s, ode23t, or ode23tb.

11 Ordinary Differential Equations (ODEs)

11-52



Question or Problem Answer
What if I have the final and not the initial
value?

All the solvers of the ODE suite allow you
to solve backward or forward in time. The
syntax for the solvers is [t,y] =
ode45(odefun,[t0 tf],y0); and the
syntax accepts t0 > tf.

My integration proceeds very slowly, using
too many time steps.

First, check that tspan is not too long.
Remember that the solver uses as many
time points as necessary to produce a
smooth solution. If the ODE function
changes on a time scale that is very short
compared to tspan, then the solver uses a
lot of time steps. Long-time integration is a
hard problem. Break tspan into smaller
pieces.

If the ODE function does not change
noticeably on the tspan interval, it could
be that your problem is stiff. Try using one
of the stiff solvers ode15s, ode23s,
ode23t, or ode23tb.

Finally, make sure that the ODE function
is written in an efficient way. The solvers
evaluate the derivatives in the ODE
function many times. The cost of numerical
integration depends critically on the
expense of evaluating the ODE function.
Rather than recomputing complicated
constant parameters at each evaluation,
store them in globals, or calculate them
once and pass them to nested functions.
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Question or Problem Answer
I know that the solution undergoes a
radical change at time t, where t0 <= t
<= tf , but the integrator steps past
without “seeing” it.

If you know that there is a sharp change at
time t, try breaking the tspan interval
into two pieces, [t0 t] and [t tf], and
call the integrator twice or continue the
integration using odextend.

If the differential equation has periodic
coefficients or solutions, ensure the solver
does not step over periods by restricting the
maximum step size to the length of the
period.
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Problem Type
Can the solvers handle partial differential
equations (PDEs) that have been
discretized by the method of lines?

Yes, because the discretization produces a
system of ODEs. Depending on the
discretization, you might have a form
involving mass matrices, which the ODE
solvers provide for. Often the system is
stiff. This is to be expected if the PDE is
parabolic, or when there are phenomena
that happen on very different time scales
such as a chemical reaction in a fluid flow.
In such cases, use one of the four stiff
solvers ode15s, ode23s, ode23t, or
ode23tb.

If there are many equations, use the
JPattern option to specify the Jacobian
sparsity pattern. This can make the
difference between success and failure as it
prevents the computation from being too
expensive. Type edit burgersode to see
an example that uses JPattern.

If the system is not stiff, or not very stiff,
then ode23 and ode45 are more efficient
than the stiff solvers ode15s, ode23s,
ode23t, and ode23tb.

You can solve parabolic-elliptic partial
differential equations in 1-D directly with
the MATLAB PDE solver pdepe.

 Troubleshoot Common ODE Problems

11-55



Can I integrate a set of sampled data? Not directly. Instead, represent the data as
a function by interpolation or some other
scheme for fitting data. The smoothness of
this function is critical. A piecewise
polynomial fit such as a spline can look
smooth to the eye, but rough to a solver;
the solver takes small steps where the
derivatives of the fit have jumps. Either
use a smooth function to represent the data
or use one of the lower-order solvers
(ode23, ode23s, ode23t, ode23tb) that is
less sensitive to smoothness. See “ODE
with Time-Dependent Terms” for an
example.

See Also
deval | odeget | odeset | odextend

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-14
• “ODE Event Location” on page 11-16
• “Nonnegative ODE Solution” on page 11-44
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Boundary-Value Problems
In this section...
“Function Summary” on page 12-2
“Boundary Value Problems” on page 12-3
“BVP Solver” on page 12-4
“Integrator Options” on page 12-6
“Examples” on page 12-7

Function Summary
• “BVP Solver” on page 12-2
• “BVP Helper Functions” on page 12-2
• “BVP Solver Options” on page 12-2

BVP Solver
Solver Description
bvp4c Solve boundary value problems for ordinary differential

equations.
bvp5c Solve boundary value problems for ordinary differential

equations.

BVP Helper Functions
Function Description
bvpinit Form the initial guess for bvp4c.
deval Evaluate the numerical solution using the output of bvp4c.

BVP Solver Options

An options structure contains named properties whose values are passed to bvp4c, and
which affect problem solution. Use these functions to create, alter, or access an options
structure.
Function Description
bvpset Create/alter the BVP options structure.
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Function Description
bvpget Extract properties from options structure created with

bvpset.

Boundary Value Problems

The BVP solver is designed to handle systems of ordinary differential equations

y′ = f(x, y)

where x is the independent variable, y is the dependent variable, and y′ represents the
derivative of y with respect to x dy/dx.

See “Choose an ODE Solver” on page 11-2 for general information about ODEs.

Boundary Conditions

In a boundary value problem, the solution of interest satisfies certain boundary
conditions. These conditions specify a relationship between the values of the solution at
more than one x. In its basic syntax, bvp4c is designed to solve two-point BVPs, i.e.,
problems where the solution sought on an interval [a, b] must satisfy the boundary
conditions

g(y(a), y(b)) = 0

Unlike initial value problems, a boundary value problem may not have a solution, may
have a finite number of solutions, or may have infinitely many solutions. As an integral
part of the process of solving a BVP, you need to provide a guess for the required
solution. The quality of this guess can be critical for the solver performance and even for
a successful computation.

There may be other difficulties when solving BVPs, such as problems imposed on infinite
intervals or problems that involve singular coefficients. Often BVPs involve unknown
parameters p that have to be determined as part of solving the problem

y′ = f(x, y, p)

g(y(a), y(b), p) = 0

In this case, the boundary conditions must suffice to determine the value of p.
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BVP Solver
• “The BVP Solver” on page 12-4
• “BVP Solver Syntax” on page 12-5
• “BVP Solver Options” on page 12-6

The BVP Solver

The function bvp4c solves two-point boundary value problems for ordinary differential
equations (ODEs). It integrates a system of first-order ordinary differential equations

y′ = f(x, y)

on the interval [a, b], subject to general two-point boundary conditions

bc(y(a),y(b)) = 0

It can also accommodate other types of BVP problems, such as those that have any of the
following:

• Unknown parameters
• Singularities in the solutions
• Multipoint conditions

In this case, the number of boundary conditions must be sufficient to determine the
solution and the unknown parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first
derivative there. You can use the function deval and the output of bvp4c to evaluate the
solution at specific points on the interval of integration.

bvp4c is a finite difference code that implements the 3-stage Lobatto IIIa formula. This
is a collocation formula and the collocation polynomial provides a C1-continuous solution
that is fourth-order accurate uniformly in the interval of integration. Mesh selection and
error control are based on the residual of the continuous solution.

The collocation technique uses a mesh of points to divide the interval of integration into
subintervals. The solver determines a numerical solution by solving a global system of
algebraic equations resulting from the boundary conditions, and the collocation
conditions imposed on all the subintervals. The solver then estimates the error of the
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numerical solution on each subinterval. If the solution does not satisfy the tolerance
criteria, the solver adapts the mesh and repeats the process. The user must provide the
points of the initial mesh as well as an initial approximation of the solution at the mesh
points.

BVP Solver Syntax

The basic syntax of the BVP solver is

sol = bvp4c(odefun,bcfun,solinit)

The input arguments are
odefun A function handle that evaluates the differential equations. It has the

basic form

dydx = odefun(x,y)

where x is a scalar, and dydx and y are column vectors. odefun can
also accept a vector of unknown parameters and a variable number of
known parameters, (see “BVP Solver Options” on page 12-6).

bcfun Handle to a function that evaluates the residual in the boundary
conditions. It has the basic form

res = bcfun(ya,yb)

where ya and yb are column vectors representing y(a) and y(b),
and res is a column vector of the residual in satisfying the boundary
conditions. bcfun can also accept a vector of unknown parameters
and a variable number of known parameters, (see “BVP Solver
Options” on page 12-6).

solinit Structure with fields x and y:
 x Ordered nodes of the initial mesh. Boundary

conditions are imposed at a = solinit.x(1) and
b = solinit.x(end).

 y Initial guess for the solution with solinit.y(:,i) a
guess for the solution at the node solinit.x(i).
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 The structure can have any name, but the fields must be named x
and y. It can also contain a vector that provides an initial guess for
unknown parameters. You can form solinit with the helper
function bvpinit. See the bvpinit reference page for details.

The output argument sol is a structure created by the solver. In the basic case the
structure has fields x, y, yp, and solver.
sol.x Nodes of the mesh selected by bvp4c
sol.y Approximation to y(x) at the mesh points of sol.x
sol.yp Approximation to y′(x) at the mesh points of sol.x
sol.solver 'bvp4c'

The structure sol returned by bvp4c contains an additional field if the problem involves
unknown parameters:
sol.parameters Value of unknown parameters, if present, found by the solver.

The function deval uses the output structure sol to evaluate the numerical solution at
any point from [a,b].

BVP Solver Options

For more advanced applications, you can specify solver options by passing an input
argument options.
options Structure of optional parameters that change the default integration

properties. This is the fourth input argument.

sol = bvp4c(odefun,bcfun,solinit,options)

You can create the structure options using the function bvpset. The
bvpset reference page describes the properties you can specify.

Integrator Options

The default integration properties in the BVP solver bvp4c are selected to handle
common problems. In some cases, you can improve solver performance by overriding
these defaults. You do this by supplying bvp4c with an options structure that specifies
one or more property values.
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For example, to change the value of the relative error tolerance of bvp4c from the default
value of 1e-3 to 1e-4,

1 Create an options structure using the function bvpset by entering

options = bvpset('RelTol', 1e-4);
2 Pass the options structure to bvp4c as follows:

sol = bvp4c(odefun,bcfun,solinit,options)

For a complete description of the available options, see the reference page for bvpset.

Examples
• “Mathieu's Equation” on page 12-7
• “Continuation” on page 12-11
• “Singular BVPs” on page 12-20
• “Multipoint BVPs” on page 12-23
• “Additional Examples” on page 12-27

Mathieu's Equation

• “Solving the Problem” on page 12-7
• “Finding Unknown Parameters” on page 12-10
• “Evaluating the Solution” on page 12-11

Solving the Problem

This example determines the fourth eigenvalue of Mathieu's Equation. It illustrates how
to write second-order differential equations as a system of two first-order ODEs and how
to use bvp4c to determine an unknown parameter λ.

The task is to compute the fourth (q = 5) eigenvalue lambda λ of Mathieu's equation

y′′ + (λ – 2 q cos 2x)y = 0

Because the unknown parameter λ is present, this second-order differential equation is
subject to three boundary conditions

y(0) = 1
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y′(0) = 0

y′(π) = 0

Note The file, mat4bvp.m, contains the complete code for this example. All the functions
required by bvp4c are coded in this file as nested or local functions. To see the code in an
editor, type edit mat4bvp at the command line. To run it, type mat4bvp at the
command line.

1 Rewrite the problem as a first-order system. To use bvp4c, you must rewrite
the equations as an equivalent system of first-order differential equations. Using a
substitution y1 = y and y2 = y′, the differential equation is written as a system of two
first-order equations

y1′ = y2

y2′ = –(λ – 2q cos 2x)y1

Note that the differential equations depend on the unknown parameter λ. The
boundary conditions become

y1(0) – 1 = 0

y2(0) = 0

y2(π) = 0
2 Code the system of first-order ODEs. Once you represent the equation as a first-

order system, you can code it as a function that bvp4c can use. Because there is an
unknown parameter, the function must be of the form

dydx = odefun(x,y,parameters)

The following code represents the system in the function, mat4ode. Variable q is
shared with the outer function:

function dydx = mat4ode(x,y,lambda)
dydx = [ y(2)
         -(lambda - 2*q*cos(2*x))*y(1) ];
end   % End nested function mat4ode
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3 Code the boundary conditions function. You must also code the boundary
conditions in a function. Because there is an unknown parameter, the function must
be of the form

res = bcfun(ya,yb,parameters)

The code below represents the boundary conditions in the function, mat4bc.

function res = mat4bc(ya,yb,lambda)
res = [  ya(2) 
         yb(2) 
        ya(1)-1 ];

4 Create an initial guess. To form the guess structure solinit with bvpinit, you
need to provide initial guesses for both the solution and the unknown parameter.

The function mat4init provides an initial guess for the solution. mat4init uses y =
cos4x because this function satisfies the boundary conditions and has the correct
qualitative behavior (the correct number of sign changes).

function yinit = mat4init(x)
yinit = [  cos(4*x)
          -4*sin(4*x) ];

In the call to bvpinit, the third argument, lambda, provides an initial guess for the
unknown parameter λ.

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);

This example uses the @ symbol to pass mat4init as a function handle to bvpinit.
5 Apply the BVP solver. The mat4bvp example calls bvp4c with the functions

mat4ode and mat4bc and the structure solinit created with bvpinit.

sol = bvp4c(@mat4ode,@mat4bc,solinit);
6 View the results. Complete the example by displaying the results:

a Print the value of the unknown parameter λ found by bvp4c.

    fprintf('Fourth eigenvalue is approximately %7.3f.\n',...
            sol.parameters)

b Use deval to evaluate the numerical solution at 100 equally spaced points in
the interval [0, π], and plot its first component. This component approximates
y(x).
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    xint = linspace(0,pi);
    Sxint = deval(sol,xint);
    plot(xint,Sxint(1,:))
    axis([0 pi -1 1.1])
    title('Eigenfunction of Mathieu''s equation.') 
    xlabel('x')
    ylabel('solution y')

The following plot shows the eigenfunction associated with the final eigenvalue
λ = 17.097.

Finding Unknown Parameters

The bvp4c solver can find unknown parameters p for problems of the form
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y′ = f(x,y,p)

bc(y(a), y (b),p) = 0

You must provide bvp4c an initial guess for any unknown parameters in the vector
solinit.parameters. When you call bvpinit to create the structure solinit, specify
the initial guess as a vector in the additional argument parameters.

solinit = bvpinit(x,v,parameters)

The bvp4c function arguments odefun and bcfun must each have a third argument.

dydx = odefun(x,y,parameters)
res = bcfun(ya,yb,parameters)

While solving the differential equations, bvp4c adjusts the value of unknown parameters
to satisfy the boundary conditions. The solver returns the final values of these unknown
parameters in sol.parameters.

Evaluating the Solution

The collocation method implemented in bvp4c produces a C1-continuous solution over
the whole interval of integration [a,b]. You can evaluate the approximate solution, S(x),
at any point in [a,b] using the helper function deval and the structure sol returned by
bvp4c.

Sxint = deval(sol,xint)

The deval function is vectorized. For a vector xint, the ith column of Sxint
approximates the solution y(xint(i)).

Continuation

• “Introduction” on page 12-11
• “Using Continuation to Solve a BVP” on page 12-12
• “Using Continuation to Verify Consistency” on page 12-15

Introduction

To solve a boundary value problem, you need to provide an initial guess for the solution.
The quality of your initial guess can be critical to the solver performance, and to being
able to solve the problem at all. However, coming up with a sufficiently good guess can be
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the most challenging part of solving a boundary value problem. Certainly, you should
apply the knowledge of the problem's physical origin. Often a problem can be solved as a
sequence of relatively simpler problems, i.e., a continuation.

This example shows how to use continuation to:

• Solve a difficult BVP
• Verify a solution's consistent behavior

Using Continuation to Solve a BVP

This example solves the differential equation

εy′′ + xy′ = επ2 cos(πx) – πx sin(πx)

for ε = 10–4, on the interval [–1 1], with boundary conditions y(–1) = –2 and y(1) = 0. For 0
< ε <1, the solution has a transition layer at x = 0. Because of this rapid change in the
solution for small values of ε, the problem becomes difficult to solve numerically.

The example solves the problem as a sequence of relatively simpler problems, i.e., a
continuation. The solution of one problem is used as the initial guess for solving the next
problem.

Note The file, shockbvp.m, contains the complete code for this example. All required
functions are coded as nested functions in this file. To see the code in an editor, type
edit shockbvp at the command line. To run it, type shockbvp at the command line.

Note This problem appears in [1] to illustrate the mesh selection capability of a well
established BVP code COLSYS.

1 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use:

The code below represents the differential equation and the boundary conditions in
the functions shockODE and shockBC. Note that shockODE is vectorized to improve
solver performance. The additional parameter ε is represented by e and is shared
with the outer function.
function dydx = shockODE(x,y)
pix = pi*x;
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dydx = [  y(2,:)
         -x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix) ];
end %   End nested function shockODE

function res = shockBC(ya,yb)
res = [ ya(1)+2 
        yb(1)   ];
end %   End nested function shockBC

2 Provide analytical partial derivatives. For this problem, the solver benefits from
using analytical partial derivatives. The code below represents the derivatives in
functions shockJac and shockBCJac.

function jac = shockJac(x,y)
jac = [ 0   1
        0 -x/e ];
end %   End nested function shockJac

function [dBCdya,dBCdyb] = shockBCJac(ya,yb)
dBCdya = [ 1 0
           0 0 ];
dBCdyb = [ 0 0
           1 0 ];
end %   End nested function shockBCJac

shockJac shares e with the outer function.

Tell bvp4c to use these functions to evaluate the partial derivatives by setting the
options FJacobian and BCJacobian. Also set 'Vectorized' to 'on' to indicate that
the differential equation function shockODE is vectorized.

options = bvpset('FJacobian',@shockJac,...
                 'BCJacobian',@shockBCJac,...
                 'Vectorized','on');

3 Create an initial guess. You must provide bvp4c with a guess structure that
contains an initial mesh and a guess for values of the solution at the mesh points. A
constant guess of y(x) ≡ 1 and y′(x) ≡ 0, and a mesh of five equally spaced points on [–
1 1] suffice to solve the problem for ε = 10–2. Use bvpinit to form the guess
structure.

sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);
4 Use continuation to solve the problem. To obtain the solution for the parameter

ε = 10–4, the example uses continuation by solving a sequence of problems for ε = 10–
2, 10–3, 10–4. The solver bvp4c does not perform continuation automatically, but the
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code's user interface has been designed to make continuation easy. The code uses the
output sol that bvp4c produces for one value of e as the guess in the next iteration.

e = 0.1; 
for i=2:4 
    e = e/10; 
    sol = bvp4c(@shockODE,@shockBC,sol,options); 
end

5 View the results. Complete the example by displaying the final solution

plot(sol.x,sol.y(1,:))
axis([-1 1 -2.2 2.2])
title(['There is a shock at x = 0 when \epsilon = '... 
      sprintf('%.e',e) '.']) 
xlabel('x')
ylabel('solution y')
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Using Continuation to Verify Consistency

Falkner-Skan BVPs arise from similarity solutions of viscous, incompressible, laminar
flow over a flat plate. An example is

f′′′ + ff′′ + β(1 – (f′)2) = 0

for β = 0.5 on the interval [0, ∞] with boundary conditions f(0) = 0, f′(0) = 0, and f′(∞) = 1.

The BVP cannot be solved on an infinite interval, and it would be impractical to solve it
for even a very large finite interval. So, the example tries to solve a sequence of problems
posed on increasingly larger intervals to verify the solution's consistent behavior as the
boundary approaches ∞.
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The example imposes the infinite boundary condition at a finite point called infinity.
The example then uses continuation in this end point to get convergence for increasingly
larger values of infinity. It uses bvpinit to extrapolate the solution sol for one value
of infinity as an initial guess for the new value of infinity. The plot of each
successive solution is superimposed over those of previous solutions so they can easily be
compared for consistency.

Note The file, fsbvp.m, contains the complete code for this example. All required
functions are coded as nested functions in this file. To see the code in an editor, type
edit fsbvp at the command line. To run it, type fsbvp at the command line.

1 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use. The problem
parameter beta is shared with the outer function.
function dfdeta = fsode(eta,f)
dfdeta = [ f(2)
           f(3)
          -f(1)*f(3) - beta*(1 - f(2)^2) ];
end %   End nested function fsode

function res = fsbc(f0,finf)
res = [f0(1)
       f0(2)
       finf(2) - 1];
end %   End nested function fsbc

2 Create an initial guess. You must provide bvp4c with a guess structure that
contains an initial mesh and a guess for values of the solution at the mesh points. A
crude mesh of five points and a constant guess that satisfies the boundary conditions
are good enough to get convergence when infinity = 3.
infinity = 3;
maxinfinity = 6;

solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);
3 Solve on the initial interval. The example obtains the solution for infinity =

3. It then prints the computed value of f′′(0) for comparison with the value reported
by Cebeci and Keller [2]:
sol = bvp4c(@fsode,@fsbc,solinit);
eta = sol.x;
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f = sol.y;

fprintf('\n');
fprintf('Cebeci & Keller report that f''''(0) = 0.92768.\n')
fprintf('Value computed using infinity = %g is %7.5f.\n', ...
         infinity,f(3,1))

The example prints

Cebeci & Keller report that f''(0) = 0.92768.
Value computed using infinity = 3 is 0.92915.

4 Setup the figure and plot the initial solution.

figure
plot(eta,f(2,:),eta(end),f(2,end),'o');
axis([0 maxinfinity 0 1.4]);
title('Falkner-Skan equation, positive wall shear, \beta = 0.5.')
xlabel('\eta')
ylabel('df/d\eta')
hold on
drawnow 
shg 
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5 Use continuation to solve the problem and plot subsequent solutions. The
example then solves the problem for infinity = 4, 5, 6. It uses bvpinit to
extrapolate the solution sol for one value of infinity as an initial guess for the
next value of infinity. For each iteration, the example prints the computed value
of f′′(0) and superimposes a plot of the solution in the existing figure.

for Bnew = infinity+1:maxinfinity
  
  solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew.
  sol = bvp4c(@fsode,@fsbc,solinit);
  eta = sol.x;
  f = sol.y;
  
  fprintf('Value computed using infinity = %g is %7.5f.\n', ...
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           Bnew,f(3,1))
  plot(eta,f(2,:),eta(end),f(2,end),'o');
  drawnow
  
end
hold off

The example prints

Value computed using infinity = 4 is 0.92774.
Value computed using infinity = 5 is 0.92770.
Value computed using infinity = 6 is 0.92770.

Note that the values approach 0.92768 as reported by Cebeci and Keller. The
superimposed plots confirm the consistency of the solution's behavior.
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Singular BVPs

• “Introduction” on page 12-20
• “Emden's equation” on page 12-20

Introduction

The function bvp4c solves a class of singular BVPs of the form
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It can also accommodate unknown parameters for problems of the form
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Singular problems must be posed on an interval [0,b] with b > 0. Use bvpset to pass the
constant matrix S to bvp4c as the value of the 'SingularTerm' integration property.
Boundary conditions at x = 0 must be consistent with the necessary condition for a
smooth solution, Sy(0) = 0. An initial guess should also satisfy this necessary condition.

When you solve a singular BVP using

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x,y) return only the value of the f(x, y) term
in Equation 5-2.
Emden's equation

Emden's equation arises in modeling a spherical body of gas. The PDE of the model is
reduced by symmetry to the ODE

¢¢ + ¢ + =y
x

y y
2

0
5

on an interval [0,1]. The coefficient 2/x is singular at x = 0, but symmetry implies the
boundary condition y′(0) = 0. With this boundary condition, the term
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Note The file, emdenbvp.m, contains the complete code for this example. It contains all
the required functions coded as local functions. To see the code in an editor, type edit
emdenbvp at the command line. To run it, type emdenbvp at the command line.

1 Rewrite the problem as a first-order system and identify the singular term.
Using a substitution y1 = y and y2 = y′, write the differential equation as a system of
two first-order equations
y y

y
x

y y

1 2

2 2 1
52

¢ =

¢ = - -

The boundary conditions become
y

y

2

1

0 0

1 3 2

( )

( ) /

=

=
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the terms of Equation 5-2 are identified as
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2 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use.

function dydx = emdenode(x,y)
dydx = [  y(2) 
         -y(1)^5 ];
function res = emdenbc(ya,yb)
res = [ ya(2)
        yb(1) - sqrt(3)/2 ];

3 Setup integration properties. Use the matrix as the value of the
'SingularTerm' integration property.

S = [0,0;0,-2];
options = bvpset('SingularTerm',S);

4 Create an initial guess. This example starts with a mesh of five points and a
constant guess for the solution.
y x

y x
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2

3 2
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( ) /
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∫

∫

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];
solinit = bvpinit(linspace(0,1,5),guess);

5 Solve the problem. Use the standard bvp4c syntax to solve the problem.

sol = bvp4c(@emdenode,@emdenbc,solinit,options);
6 View the results. This problem has an analytical solution
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The example evaluates the analytical solution at 100 equally spaced points and plots
it along with the numerical solution computed using bvp4c.

x = linspace(0,1);
truy = 1 ./ sqrt(1 + (x.^2)/3);
plot(x,truy,sol.x,sol.y(1,:),'ro');
title('Emden problem -- BVP with singular term.')
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legend('Analytical','Computed');
xlabel('x');
ylabel('solution y');

Multipoint BVPs

In multipoint boundary value problems, the solution of interest satisfies conditions at
points inside the interval of integration. The bvp4c function is useful in solving such
problems.

The following example shows how the multipoint capability in bvp4c can improve
efficiency when you are solving a nonsmooth problem. The following equations are solved
on 0 ≤ x ≤ λ for constant parameters n, κ, λ > 1, and η = λ2/(n × κ2). These are subject to
boundary conditions v(0) = 0 and C(λ) = 1:
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v' = (C - 1)/n
C' = (v * C - min(x,1))/h

The term min(x,1) is not smooth at xc = 1, and this can affect the solver's efficiency.
By introducing an interface point at xc = 1, smooth solutions can be obtained on [0,1]
and [1,λ]. To get a continuous solution over the entire interval [0,λ], the example imposes
matching conditions at the interface.

Note The file, threebvp.m, contains the complete code for this example, and it solves
the problem for λ = 2, n = 0.05, and several values of κ. All required functions are
coded as nested functions in threebvp.m. To see the code in an editor, type edit
threebvp at the command line. To run it, type threebvp at the command line.

The example takes you through the following steps:

1 Determine the interfaces and divide the interval of integration into
regions. Introducing an interface point at xc = 1 divides the problem into two
regions in which the solutions remain smooth. The differential equations for the two
regions are

Region 1: 0 ≤ x ≤ 1

v' = (C - 1)/n 
C' = (v * C - x)/h

Region 2: 1 ≤ x ≤ λ

v' = (C - 1)/n 
C' = (v * C - 1)/h

Note that the interface xc = 1 is included in both regions. At xc = 1, bvp4c
produces a left and right solution. These solutions are denoted as v(1-), C(1-) and
v(1+), C(1+) respectively.

2 Determine the boundary conditions. Solving two first-order differential
equations in two regions requires imposing four boundary conditions. Two of these
conditions come from the original formulation; the others enforce the continuity of
the solution across the interface xc = 1:
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v(0) = 0
C(l ) - 1 = 0
v(1-) - v(1+) = 0
C(1-) - C(1+) = 0

Here, v(1-), C(1-) and v(1+), C(1+) denote the left and right solution at the
interface.

3 Code the derivative function. In the derivative function, y(1) corresponds to
v(x), and y(2) corresponds to C(x). The additional input argument region
identifies the region in which the derivative is evaluated. bvp4c enumerates regions
from left to right, starting with 1. Note that the problem parameters n and η are
shared with the outer function:

function dydx = f(x,y,region)
   dydx = zeros(2,1);
   dydx(1) = (y(2) - 1)/n;

   % The definition of C'(x) depends on the region.
   switch region
      case 1                                % x in [0 1]
         dydx(2) = (y(1)*y(2) - x)/h ; 
      case 2                                % x in [1 l ]
         dydx(2) = (y(1)*y(2) - 1)/h ; 
    end
end                % End nested function f

4 Code the boundary conditions function. For multipoint BVPs, the arguments of
the boundary conditions function, YL and YR, become matrices. In particular, the kth
column YL(:,k) represents the solution at the left boundary of the kth region.
Similarly, YR(:,k) represents the solution at the right boundary of the kth region.

In the example, y(0) is approximated by YL(:,1), while y(λ) is approximated by
YR(:,end). Continuity of the solution at the internal interface requires that YR(:,
1) = YL(:,2). Nested function bc computes the residual in the boundary
conditions:

function res = bc(YL,YR)
   res = [YL(1,1)               % v(0) = 0
          YR(1,1) - YL(1,2)     % Continuity of v(x) at x=1
          YR(2,1) - YL(2,2)     % Continuity of C(x) at x=1
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          YR(2,end) - 1];       % C(l ) = 1
end                             % End nested function bc

5 Create an initial guess. For multipoint BVPs, when creating an initial guess using
bvpinit, use double entries in xinit for the interface point xc. This example uses
a constant guess yinit = [1;1]:

xc = 1;
xinit = [0, 0.25, 0.5, 0.75, xc, xc, 1.25, 1.5, 1.75, 2];
solinit = bvpinit(xinit,yinit)

For multipoint BVPs, you can use different guesses in different regions. To do that,
you specify the initial guess for y as a function using the following syntax:

solinit = bvpinit(xinit,@yinitfcn)

The initial guess function must have the following general form:

function y = yinitfcn(x,region)
   switch region
   case 1            % x in [0, 1]
      y = [1;1];     % initial guess for y(x) 0 £ £x 1

   case 2 % x in [1, l ]
      y = [1;1];     % initial guess for y(x), 1 £ £x l

end
6 Apply the solver. The bvp4c function uses the same syntax for multipoint BVPs as

it does for two-point BVPs:

sol = bvp4c(@f,@bc,solinit);

The mesh points returned in sol.x are adapted to the solution behavior, but the
mesh still includes a double entry for the interface point xc = 1. Corresponding
columns of sol.y represent the left and right solution at xc.

7 View the results. Using deval, the solution can be evaluated at any point in the
interval of integration.

Note that, with the left and right values computed at the interface, the solution is
not uniquely defined at xc = 1. When evaluating the solution exactly at the
interface, deval issues a warning and returns the average of the left and right
solution values. Call deval at xc-eps(xc) and xc+eps(xc) to get the limit values
at xc.
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The example plots the solution approximated at the mesh points selected by the
solver:

plot(sol.x,sol.y(1,:),sol.x,sol.y(2,:),'--')
legend('v(x)','C(x)')
title(['A three-point BVP solved with BVP4C'])
xlabel(['\lambda = 2, \kappa = 5.'])
ylabel('v and C')

Additional Examples

The following additional examples are available. Type

edit examplename
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to view the code and

examplename

to run the example.
Example Name Description
emdenbvp Emden's equation, a singular BVP
fsbvp Falkner-Skan BVP on an infinite interval
mat4bvp Fourth eigenfunction of Mathieu's equation
shockbvp Solution with a shock layer near x = 0
twobvp BVP with exactly two solutions
threebvp Three-point boundary value problem

For additional examples, see Tutorial on Solving BVPs with BVP4C.
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Partial Differential Equations

In this section...
“Function Summary” on page 13-2
“Initial Value Problems” on page 13-2
“PDE Solver” on page 13-3
“Integrator Options” on page 13-6
“Examples” on page 13-7

Function Summary
• “PDE Solver” on page 13-2
• “PDE Helper Function” on page 13-2

PDE Solver

This is the MATLAB PDE solver.
PDE Initial-Boundary Value
Problem Solver

Description

pdepe Solve initial-boundary value problems for systems of
parabolic and elliptic PDEs in one space variable and time.

PDE Helper Function
PDE Helper Function Description
pdeval Evaluate the numerical solution of a PDE using the output

of pdepe.

Initial Value Problems

pdepe solves systems of parabolic and elliptic PDEs in one spatial variable x and time t,
of the form
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The PDEs hold for t0 ≤ t ≤ tf and a ≤ x ≤ b. The interval [a, b] must be finite. m can be 0, 1,
or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If m > 0,
then a ≥ 0 must also hold.

In “Equation 13-1” on page 13-2, f(x,t,u,∂u/∂x) is a flux term and s(x,t,u,∂u/∂x) is a source
term. The flux term must depend on ∂u/∂x. The coupling of the partial derivatives with
respect to time is restricted to multiplication by a diagonal matrix c(x,t,u,∂u/∂x). The
diagonal elements of this matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a parabolic equation.
There must be at least one parabolic equation. An element of c that corresponds to a
parabolic equation can vanish at isolated values of x if they are mesh points.
Discontinuities in c and/or s due to material interfaces are permitted provided that a
mesh point is placed at each interface.

At the initial time t = t0, for all x the solution components satisfy initial conditions of the
form

u x t u x( , ) ( ).0 0=

At the boundary x = a or x = b, for all t the solution components satisfy a boundary
condition of the form

p x t u q x t f x t u
u

x
( , , ) ( , ) , , , .+ ∂

∂
Ê
ËÁ

ˆ
¯̃

= 0

q(x,t) is a diagonal matrix with elements that are either identically zero or never zero.
Note that the boundary conditions are expressed in terms of the f rather than partial
derivative of u with respect to x ∂u/∂x. Also, of the two coefficients, only p can depend on
u.

PDE Solver
The PDE Solver

The MATLAB PDE solver, pdepe, solves initial-boundary value problems for systems of
parabolic and elliptic PDEs in the one space variable x and time t. There must be at least
one parabolic equation in the system.

The pdepe solver converts the PDEs to ODEs using a second-order accurate spatial
discretization based on a fixed set of user-specified nodes. The discretization method is
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described in [1]. The time integration is done with ode15s. The pdepe solver exploits the
capabilities of ode15s for solving the differential-algebraic equations that arise when
“Equation 13-1” on page 13-2 contains elliptic equations, and for handling Jacobians with
a specified sparsity pattern. ode15s changes both the time step and the formula
dynamically.

After discretization, elliptic equations give rise to algebraic equations. If the elements of
the initial conditions vector that correspond to elliptic equations are not “consistent” with
the discretization, pdepe tries to adjust them before beginning the time integration. For
this reason, the solution returned for the initial time may have a discretization error
comparable to that at any other time. If the mesh is sufficiently fine, pdepe can find
consistent initial conditions close to the given ones. If pdepe displays a message that it
has difficulty finding consistent initial conditions, try refining the mesh. No adjustment
is necessary for elements of the initial conditions vector that correspond to parabolic
equations.

PDE Solver Syntax

The basic syntax of the solver is:

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

Note Correspondences given are to terms used in “Initial Value Problems” on page 13-2.

The input arguments are
m Specifies the symmetry of the problem. m can be 0 = slab,

1 = cylindrical, or 2 = spherical. It corresponds to m in
“Equation 13-1” on page 13-2.

pdefun Function that defines the components of the PDE. It computes
the terms c, f, and s in “Equation 13-1” on page 13-2, and has the
form

[c,f,s] = pdefun(x,t,u,dudx)

where x and t are scalars, and u and dudx are vectors that
approximate the solution u and its partial derivative with
respect to x. c, f, and s are column vectors. c stores the diagonal
elements of the matrix c.
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icfun Function that evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns
the initial values of the solution components at x in the column
vector u.

bcfun Function that evaluates the terms p and q of the boundary
conditions. It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

where ul is the approximate solution at the left boundary xl =
a and ur is the approximate solution at the right boundary xr =
b. pl and ql are column vectors corresponding to p and the
diagonal of q evaluated at xl. Similarly, pr and qr correspond to
xr. When m > 0 and a = 0, boundedness of the solution near x = 0
requires that the f vanish at a = 0. pdepe imposes this boundary
condition automatically and it ignores values returned in pl and
ql.

xmesh Vector [x0, x1, ..., xn] specifying the points at which a numerical
solution is requested for every value in tspan. x0 and xn
correspond to a and b, respectively.

Second-order approximation to the solution is made on the mesh
specified in xmesh. Generally, it is best to use closely spaced
mesh points where the solution changes rapidly. pdepe does not
select the mesh in x automatically. You must provide an
appropriate fixed mesh in xmesh. The cost depends strongly on
the length of xmesh. When m > 0, it is not necessary to use a fine
mesh near x = 0 to account for the coordinate singularity.

The elements of xmesh must satisfy x0 < x1 < ... < xn. The
length of xmesh must be ≥ 3.

 Partial Differential Equations

13-5



tspan Vector [t0, t1, ..., tf] specifying the points at which a solution is
requested for every value in xmesh. t0 and tf correspond to t0
and tf, respectively.

pdepe performs the time integration with an ODE solver that
selects both the time step and formula dynamically. The
solutions at the points specified in tspan are obtained using the
natural continuous extension of the integration formulas. The
elements of tspan merely specify where you want answers and
the cost depends weakly on the length of tspan.

The elements of tspan must satisfy t0 < t1 < ... < tf. The
length of tspan must be ≥ 3.

The output argument sol is a three-dimensional array, such that

• sol(:,:,k) approximates component k of the solution u.
• sol(i,:,k) approximates component k of the solution at time tspan(i) and mesh

points xmesh(:).
• sol(i,j,k) approximates component k of the solution at time tspan(i) and the mesh

point xmesh(j).

PDE Solver Options

For more advanced applications, you can also specify as input arguments solver options
and additional parameters that are passed to the PDE functions.
options Structure of optional parameters that change the default

integration properties. This is the seventh input argument.

sol = pdepe(m,pdefun,icfun,bcfun,...
            xmesh,tspan,options)

See “Integrator Options” on page 13-6 for more information.

Integrator Options
The default integration properties in the MATLAB PDE solver are selected to handle
common problems. In some cases, you can improve solver performance by overriding
these defaults. You do this by supplying pdepe with one or more property values in an
options structure.
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sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Use odeset to create the options structure. Only those options of the underlying ODE
solver shown in the following table are available for pdepe. The defaults obtained by
leaving off the input argument options are generally satisfactory.
PDE Properties

Properties Category Property Name
Error control RelTol, AbsTol, NormControl
Step-size InitialStep, MaxStep

Examples
• “Single PDE” on page 13-7
• “System of PDEs” on page 13-13
• “Additional Examples” on page 13-17

Single PDE

• “Solving the Equation” on page 13-7
• “Evaluating the Solution” on page 13-12

Solving the Equation

This example illustrates the straightforward formulation, solution, and plotting of the
solution of a single PDE
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Note The file, pdex1.m, contains the complete code for this example. It contains all the
required functions coded as local functions. To see the code in an editor, type edit
pdex1 at the command line. To run it, type pdex1 at the command line. See “PDE Solver
Syntax” on page 13-4 for more information.

1 Rewrite the PDE. Write the PDE in the form
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This is the form shown in “Equation 13-1” on page 13-2 and expected by pdepe. See
“Initial Value Problems” on page 13-2 for more information. For this example, the
resulting equation is
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2 Code the PDE. Once you rewrite the PDE in the form shown above
(“Equation 13-1” on page 13-2) and identify the terms, you can code the PDE in a
function that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the c, f, and s terms. The code below computes c, f,
and s for the example problem.

function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;

3 Code the initial conditions function. You must code the initial conditions in a
function of the form
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u = icfun(x)

The code below represents the initial conditions in the function pdex1ic.

function u0 = pdex1ic(x)
u0 = sin(pi*x);

4 Code the boundary conditions function. You must also code the boundary
conditions in a function of the form
[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The boundary conditions, written in the same form as “Equation 13-3” on page 13-3,
are

u t
u
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The code below evaluates the components p(x,t,u) and q(x,t) of the boundary
conditions in the function pdex1bc.

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In the function pdex1bc, pl and ql correspond to the left boundary conditions (x =
0), and pr and qr correspond to the right boundary condition (x = 1).

5 Select mesh points for the solution. Before you use the MATLAB PDE solver,
you need to specify the mesh points (t,x) at which you want pdepe to evaluate the
solution. Specify the points as vectors t and x.

The vectors t and x play different roles in the solver (see “PDE Solver” on page 13-3).
In particular, the cost and the accuracy of the solution depend strongly on the length
of the vector x. However, the computation is much less sensitive to the values in the
vector t.

This example requests the solution on the mesh produced by 20 equally spaced
points from the spatial interval [0,1] and five values of t from the time interval [0,2].
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x = linspace(0,1,20);
t = linspace(0,2,5);

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex1pde, pdex1ic, and pdex1bc, and the mesh defined by x and t at which
pdepe is to evaluate the solution. The pdepe function returns the numerical solution
in a three-dimensional array sol, where sol(i,j,k) approximates the kth
component of the solution, uk, evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

This example uses @ to pass pdex1pde, pdex1ic, and pdex1bc as function handles
to pdepe.

Note See “Function Handles” for more information about function handles.
7 View the results. Complete the example by displaying the results:

a Extract and display the first solution component. In this example, the solution u
has only one component, but for illustrative purposes, the example “extracts” it
from the three-dimensional array. The surface plot shows the behavior of the
solution.

    u = sol(:,:,1);
    
    surf(x,t,u)    
    title('Numerical solution computed with 20 mesh points')
    xlabel('Distance x')
    ylabel('Time t')
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b Display a solution profile at tf, the final value of t. In this example, tf = t = 2.

    figure
    plot(x,u(end,:))
    title('Solution at t = 2')
    xlabel('Distance x')
    ylabel('u(x,2)')
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Evaluating the Solution

After obtaining and plotting the solution above, you might be interested in a solution
profile for a particular value of t, or the time changes of the solution at a particular point
x. The kth column u(:,k) (of the solution extracted in step 7) contains the time history
of the solution at x(k). The jth row u(j,:) contains the solution profile at t(j).

Using the vectors x and u(j,:), and the helper function pdeval, you can evaluate the
solution u and its derivative ∂u/∂x at any set of points xout
[uout,DuoutDx] = pdeval(m,x,u(j,:),xout)

The example pdex3 uses pdeval to evaluate the derivative of the solution at xout = 0.
See pdeval for details.
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System of PDEs

This example illustrates the solution of a system of partial differential equations. The
problem is taken from electrodynamics. It has boundary layers at both ends of the
interval, and the solution changes rapidly for small t.

The PDEs are
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where F(y) = exp(5.73y) – exp(–11.46y). The equations hold on an interval 0 ≤ x ≤ 1 for
times t ≥ 0.

The solution u satisfies the initial conditions
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Note The file, pdex4.m, contains the complete code for this example. It contains all the
required functions coded as local functions. To see the code in an editor, type edit
pdex4 at the command line. To run it, type pdex4 at the command line.

1 Rewrite the PDE. In the form expected by pdepe, the equations are
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The boundary conditions on the partial derivatives of u have to be written in terms
of the flux. In the form expected by pdepe, the left boundary condition is

0 1
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and the right boundary condition is
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2 Code the PDE. After you rewrite the PDE in the form shown above, you can code it
as a function that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the c, f, and s terms in “Equation 13-1” on page 13-2.

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1]; 
f = [0.024; 0.17] .* DuDx; 
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];  

3 Code the initial conditions function. The initial conditions function must be of
the form

u = icfun(x)

The code below represents the initial conditions in the function pdex4ic.

function u0 = pdex4ic(x);
u0 = [1; 0]; 

4 Code the boundary conditions function. The boundary conditions functions
must be of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The code below evaluates the components p(x,t,u) and q(x,t) (“Equation 13-3” on page
13-3) of the boundary conditions in the function pdex4bc.

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)]; 
ql = [1; 0];     
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pr = [ur(1)-1; 0]; 
qr = [0; 1];     

5 Select mesh points for the solution. The solution changes rapidly for small t. The
program selects the step size in time to resolve this sharp change, but to see this
behavior in the plots, output times must be selected accordingly. There are boundary
layers in the solution at both ends of [0,1], so mesh points must be placed there to
resolve these sharp changes. Often some experimentation is needed to select the
mesh that reveals the behavior of the solution.

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex4pde, pdex4ic, and pdex4bc, and the mesh defined by x and t at which pdepe
is to evaluate the solution. The pdepe function returns the numerical solution in a
three-dimensional array sol, where sol(i,j,k) approximates the kth component
of the solution, μk, evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

7 View the results. The surface plots show the behavior of the solution components.

u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')
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figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
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Additional Examples

The following additional examples are available. Type

edit examplename

to view the code and

examplename

to run the example.
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Example Name Description
pdex1 Simple PDE that illustrates the straightforward formulation,

computation, and plotting of the solution
pdex2 Problem that involves discontinuities
pdex3 Problem that requires computing values of the partial

derivative
pdex4 System of two PDEs whose solution has boundary layers at both

ends of the interval and changes rapidly for small t.
pdex5 System of PDEs with step functions as initial conditions

References

[1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization of Parabolic
Equations in One Space Variable," SIAM Journal on Scientific and Statistical
Computing, Vol. 11, 1990, pp. 1-32.

See Also
bvp4c | bvp5c | ode45 | pdepe

13 Partial Differential Equations (PDEs)

13-18



Delay Differential Equations (DDEs)

• “Types of DDEs” on page 14-2
• “Discontinuities in DDEs” on page 14-5
• “DDE with Constant Delays” on page 14-7
• “State-Dependent Delay Problem” on page 14-10
• “Cardiovascular Model with Discontinuities” on page 14-14
• “DDE of Neutral Type” on page 14-18
• “Initial Value DDE of Neutral Type” on page 14-22
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Types of DDEs

In this section...
“Constant Delay DDEs” on page 14-2
“Time-Dependent and State-Dependent DDEs” on page 14-2
“DDEs of Neutral Type” on page 14-3
“Evaluating the Solution at Specific Points” on page 14-3
“History and Initial Values” on page 14-3
“Propagation of Discontinuities” on page 14-4

Constant Delay DDEs

A system of differential equations (DDEs) with constant delays has the following form:

¢ = - -y t f t y t y t y t k( ) ( , ( ), ( ), , ( )).t t1 …

Here, t is the independent variable, y is a column vector of dependent variables, and y ′
represents the first derivative of y with respect to t. The delays, τ1,…,τk, are positive
constants.

The dde23 function solves DDEs of the form given by “Equation 14-1” on page 14-2 with
history y(t) = S(t) for t <t0.

The solutions of DDEs are generally continuous, but they have discontinuities in their
derivatives. The dde23 function tracks discontinuities in low-order derivatives. It
integrates the differential equations with the same explicit Runge-Kutta (2,3) pair and
interpolant used by ode23. The Runge-Kutta formulas are implicit for step sizes bigger
than the delays. When y(t) is smooth enough to justify steps this big, the implicit
formulas are evaluated by a predictor-corrector iteration.

Time-Dependent and State-Dependent DDEs

“Equation 14-1” on page 14-2 is a special case of

¢ =y t f t y t y dy y dyp( ) ( , ( ), ( ), ..., ( ))1
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that involves delays, dy1,..., dyk, which can depend on both time, t, and state, y. The
delays, dyj(t, y), must satisfy dyj(t, y) ≤ t on the interval [t0, tf] with t0 < tf.

The ddesd function finds the solution, y(t), for DDEs of the form given by
“Equation 14-2” on page 14-2 with history y(t) = S(t) for t < t0. The ddesd function
integrates with the classic four-stage, fourth-order explicit Runge-Kutta method, and it
controls the size of the residual of a natural interpolant. It uses iteration to take steps
that are longer than the delays.

DDEs of Neutral Type

Delay differential equations of neutral type involve delays in y ′ as well as y:

¢ = ¢ ¢y t f t y t y dy y dy y dyp y dypp q( ) ( , ( ), ( ), ..., ( ), ( ),..., ( )).1 1

The delays in the solution must satisfy dyi(t,y) ≤ t. The delays in the first derivative must
satisfy dypj(t,y) < t so that y ′ does not appear on both sides of the equation.

The ddensd function solves DDEs of neutral type by approximating them with DDEs of
the form given by “Equation 14-2” on page 14-2. For more information, see Shampine [1].

Evaluating the Solution at Specific Points

Use the deval function and the output from any of the DDE solvers to evaluate the
solution at specific points in the interval of integration. For example, y = deval(sol,
0.5*(sol.x(1) + sol.x(end))) evaluates the solution at the midpoint of the
interval of integration.

History and Initial Values

When you solve a DDE, you approximate the solution on an interval [t0,tf] with t0 < tf.
The DDEs show how y ′(t) depends on values of the solution (and possibly its derivative)
at times prior to t. For example, “Equation 14-1” on page 14-2 shows that y ′(t0) depends
on y(t0 – τ1),…,y(t0 – τk) for positive constants τj. Because of this, a solution on [t0, tk]
depends on values it has at t ≤ t0. You must define these values with a history function,
y(t) = S(t) for t <t0.
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Propagation of Discontinuities

Generally, the first derivative of the solution has a jump at the initial point. This is
because the first derivative of the history function, S(t), generally does not satisfy the
DDE at this point. A discontinuity in any derivative of y(t) propagates into the future at
spacings of τ1,…, τk when the delays are constant, as in “Equation 14-1” on page 14-2. If
the delays are not constant, the propagation of discontinuities is more complicated. For
neutral DDEs of the form given by “Equation 14-1” on page 14-2 or “Equation 14-2” on
page 14-2, the discontinuity appears in the next higher order derivative each time it is
propagated. In this sense, the solution gets smoother as the integration proceeds.
Solutions of neutral DDEs of the form given by “Equation 14-3” on page 14-3 are
qualitatively different. The discontinuity in the solution does not propagate to a
derivative of higher order. In particular, the typical jump in y ′(t) at t0 propagates as
jumps in y ′(t) throughout [t0, tf].

References

[1] Shampine, L.F. “Dissipative Approximations to Neutral DDEs.” Applied Mathematics
& Computation, Vol. 203, 2008, pp. 641–648.

See Also
dde23 | ddensd | ddesd

More About
• “Discontinuities in DDEs” on page 14-5
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Discontinuities in DDEs
If your problem has discontinuities, it’s best to communicate them to the solver using an
options structure. To do this, use the ddeset function to create an options structure
containing the discontinuities in your problem.

There are three properties in the options structure that you can use to specify
discontinuities; InitialY, Jumps, and Events. The property you choose depends on the
location and nature of the discontinuities.
Nature of Discontinuity Property Comments
At the initial value t = t0 InitialY Generally the initial value y(t0) is the

value S(t0) returned by the history
function, meaning the solution is
continuous at the initial point. If this
is not the case, supply a different
initial value using the InitialY
property.

In the history, i.e., the
solution at t <t0, or in the
equation coefficients for t
>t0

Jumps Provide the known locations t of the
discontinuities in a vector as the value
of the Jumps property. Applies only to
dde23.

State-dependent Events dde23, ddesd, and ddensd use the
events function you supply to locate
these discontinuities. When the solver
finds such a discontinuity, restart the
integration to continue. Specify the
solution structure for the current
integration as the history for the new
integration. The solver extends each
element of the solution structure after
each restart so that the final structure
provides the solution for the whole
interval of integration. If the new
problem involves a change in the
solution, use the InitialY property to
specify the initial value for the new
integration.
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See Also
ddeget | ddeset

More About
• “Types of DDEs” on page 14-2
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DDE with Constant Delays
This example shows how to use dde23 to solve a system of DDEs with constant delays.

Click ddex1.m or type edit ddex1.m in a command window to view the code for this
example in an editor.

The differential equations are:
y t y t

y t y t y t

y t y t

1 1

2 1 2

3 2

1

1 0 2

¢ = -

¢ = - + -

¢ =

( ) ( )

( ) ( ) ( . )

( ) ( ).

The history of this problem is constant:
y t

y t

y t

1

2

3

1

1

1

( )

( )

( )

=

=

=

for t ≤ 0.

1 Create a new program file in the editor. This file will contain a main function and
two local functions.

2 Define the first-order DDE as a local function.

function dydt = ddex1de(t,y,Z)
  ylag1 = Z(:,1);
  ylag2 = Z(:,2);
  dydt = [ylag1(1); ylag1(1)+ylag2(2); y(2)];
end

3 Define the solution history as a local function.

function S = ddex1hist(t)
  S = ones(3,1);
end

4 Define the delays, τ1,…,τk in the main function.

lags = [1,0.2];
5 Solve the DDE by calling dde23 in the main function. Pass the DDE function, the

delays, the solution history, and interval of integration, [0,5], as inputs.
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sol = dde23(@ddex1de,lags,@ddex1hist,[0,5]);

The dde23 function produces a continuous solution over the whole interval of
integration [t0,tf].

6 Plot the solution returned by dde23. Add this code to your main function.

plot(sol.x,sol.y);
title('An example of Wille and Baker');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3','Location','NorthWest');

7 Evaluate the solution at 10 equally spaced points over the interval of integration.
Then plot the results on the same axes as sol.y. Add this code to the main function.

tint = linspace(0,5,10);
Sint = deval(sol,tint)
hold on
plot(tint,Sint,'o');

8 Run your program to generate and plot the results.
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See Also

Related Examples
• “Create Functions in Files”
• “Run Functions in the Editor”

More About
• “Create Function Handle”
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State-Dependent Delay Problem
This example shows how to use ddesd to solve a system of two DDEs with a state-
dependent delay. This system of DDEs was used as a test problem by Enright and
Hayashi [1].

Click ddex3.m or type edit ddex3.m in a command window to view the complete code
for this example in an editor.

The equations for this system are:
y t y t

y t y e y t e
y t y t

1 2

2 2
1

2
2 1

2 2

¢ =

¢ = - ◊ ◊
- -

( ) ( )

( ) ( ) ( ) .
( ( )) ( ( ))

The analytical solution
y t t

y t t

1

2 1

( ) log( )

( ) /

=

=

is used as the history for t ≤ 0.1 and the equations are solved on [0.1, 5] with ddesd
rather than dde23. The ddesd function is appropriate in this case because the first
factor in the second equation has the form y2(d(y)) with a delay that depends on the
second component of the solution.

1 Create a new program file in the editor. This file will contain a main function and
three local functions.

2 Code the system of DDEs as a local function.

function dydt = ddex3de(t,y,Z)
  dydt = [y(2); -Z(2)*y(2)^2*exp(1 - y(2))];
end

3 Define the delay as a local function.

function d = ddex3delay(t,y)
  d = exp(1 - y(2));
end

4 Define the solution history as a local function.

function v = ddex3hist(t)  
  v = [log(t); 1./t];
end
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5 Define the interval of integration and solve the system. Add this code to the main
function in your program file.

tspan = [0.1 5];
sol = ddesd(@ddex3de,@ddex3delay,@ddex3hist,tspan);

6 Use the history function to calculate the analytical solution within the integration
interval. Add this code to the main function.

texact = linspace(0.1,5);
yexact = ddex3hist(texact);

7 Plot the numerical solution on the same axes as the analytical solution. Add this
code to the main function.

figure
plot(texact,yexact,sol.x,sol.y,'o')
legend('y_1, exact','y_2, exact','y_1, ddesd','y_2, ddesd')
xlabel('time t')
ylabel('solution y')
title('D1 problem of Enright and Hayashi')

8 Run your program to generate and plot the results.
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14 Delay Differential Equations (DDEs)

14-12



See Also
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Cardiovascular Model with Discontinuities
This example shows how to use dde23 to solve a cardiovascular model that has a
discontinuous derivative as presented by Ottesen [1].

Click ddex2.m or type edit ddex2.m in a command window to view the code for this
example in an editor.

This is a problem with 1 delay, constant history, and 3 differential equations with 14
physical parameters. The system is heavily influenced by peripheral pressure, R, which
decreases exponentially from 1.05 to 0.84, beginning at t = 600. As a result, the system
has a discontinuity in a low-order derivative at t = 600.

1 Create a new program file in the editor. This file will contain a main function and a
nested function. The main function accepts no inputs and returns no outputs.

2 Define the physical parameters. Add this code to the main function.

p.ca     = 1.55;
p.cv     = 519;
p.R      = 1.05;
p.r      = 0.068;
p.Vstr   = 67.9;
p.alpha0 = 93;
p.alphas = 93;
p.alphap = 93;
p.alphaH = 0.84;
p.beta0  = 7;
p.betas  = 7;
p.betap  = 7;
p.betaH  = 1.17;
p.gammaH = 0;

3 Define the solution history. Add this code to the main function.

P0 = 93;
Paval = P0;
Pvval = (1 / (1 + p.R/p.r)) * P0;
Hval = (1 / (p.R * p.Vstr)) * (1 / (1 + p.r/p.R)) * P0;
history = [Paval; Pvval; Hval];

4 Define the delay, tau. Add this code to the main function.

tau = 4;
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5 Define the location of discontinuity, which occurs at t = 600. Add this code to the
main function.

options = ddeset('Jumps',600);

When your DDE has discontinuities in low-order derivatives, and you know the
locations in advance, it is better to use ddeset with the Jumps property.

6 Solve the DDE over the interval [0, 1000]. Add this code to the main function.

sol = dde23(@ddex2de,tau,history,[0,1000],options);

The function, @ddex2de, which defines the system of DDEs, is the first input
argument. You define this function in “8” on page 14-15.

7 Plot the solution. Add this code to the main function.

figure
plot(sol.x,sol.y(3,:))
title('Heart Rate for Baroflex-Feedback Mechanism.')
xlabel('time t')
ylabel('H(t)')

8 Define the system of DDEs as a nested function inside the main function.

function dydt = ddex2de(t,y,Z)
    if t <= 600
      p.R = 1.05;
    else
      p.R = 0.21 * exp(600-t) + 0.84;
    end    
    ylag = Z(:,1);
    Patau = ylag(1);
    Paoft = y(1);
    Pvoft = y(2);
    Hoft  = y(3);

    dPadt = - (1 / (p.ca * p.R)) * Paoft ...
            + (1/(p.ca * p.R)) * Pvoft ...
            + (1/p.ca) * p.Vstr * Hoft;

    dPvdt = (1 / (p.cv * p.R)) * Paoft...
            - ( 1 / (p.cv * p.R)...
            + 1 / (p.cv * p.r) ) * Pvoft;

    Ts = 1 / ( 1 + (Patau / p.alphas)^p.betas );

 Cardiovascular Model with Discontinuities

14-15



    Tp = 1 / ( 1 + (p.alphap / Paoft)^p.betap );

    dHdt = (p.alphaH * Ts) / (1 + p.gammaH * Tp) ...
           - p.betaH * Tp;

    dydt = [ dPadt; dPvdt; dHdt];
  end 

This function is nested so that the main function can access the 14 parameters
defined in “2” on page 14-14.

9 Run your program to calculate the solution and display the plot.

References

[1] Ottesen, J. T. “Modelling of the Baroflex-Feedback Mechanism with Time-Delay.” J.
Math. Biol. Vol. 36, Number 1, 1997, pp. 41–63.
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DDE of Neutral Type
This example shows how to use ddensd to solve the neutral DDE presented by Paul [1]
for 0 ≤ t ≤ π.

Click ddex4.m or type edit ddex4.m in a command window to view the code for this
example in an editor.

The equation is

y '(t) = 1 + y(t) – 2y(t/2)2 – y '(t – π)

with history:

y(t) = cos (t) for t ≤ 0.

1 Create a new program file in the editor. This file will contain a main function and
four local functions.

2 Define the first-order DDE as a local function.

function yp = ddefun(t,y,ydel,ypdel) 
    yp = 1 + y - 2*ydel^2 - ypdel;
end

3 Define the solution delay as a local function.

function dy = dely(t,y) 
    dy = t/2;
end

4 Define the derivative delay as a local function.

function dyp = delyp(t,y) 
    dyp = t-pi;
end

5 Define the solution history as a local function.

function y = history(t)
    y = cos(t);
end

6 Define the interval of integration and solve the DDE using the ddensd function. Add
this code to the main function.
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tspan = [0 pi];
sol = ddensd(@ddefun,@dely,@delyp,@history,tspan);

7 Evaluate the solution at 100 equally spaced points between 0 and π. Add this code to
the main function.

tn = linspace(0,pi);
yn = deval(sol,tn);

8 Plot the results. Add this code to the main function.

figure
plot(tn,yn);
xlim([0 pi]);
ylim([-1.2 1.2])
xlabel('time t');
ylabel('solution y');
title('Example of Paul with 1 equation and 2 delay functions')

9 Run your program to calculate the solution and display the plot.
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Initial Value DDE of Neutral Type
This example shows how to use ddensd to solve the initial value DDE presented by
Jackiewicz [1] for 0 ≤ t ≤ 0.1.

Click ddex5.m or type edit ddex5.m in a command window to view the code for this
example in an editor.

The equation is

y '(t) = 2cos(2t) y(t/2)2cos(t) + log(y '(t/2)) – log(2cos(t)) – sin(t).

This is an initial value DDE because the delays are zero at t0. The initial conditions are:

y(0) = 1

y '(0) = s,

where s is the solution of:

2 + log(s) – log(2) = 0.

This equation is satisfied by s1 = 2 and s2 = 0.4063757399599599.

1 Create a new program file in the editor. This file will contain a main function and
one local function.

2 Define the DDE as a local function.

function yp = ddefun(t,y,ydel,ypdel) 
yp=2*cos(2*t)*ydel^(2*cos(t))+log(ypdel)-log(2*cos(t))-sin(t);
end

3 Define the solution delay and derivative delay. Add this line to the main function.

delay = @(t,y) t/2; 

You can use one anonymous function to handle both delays since they are the same
in the equation.

4 Define the initial conditions, y0 and s1, and the interval of integration, tspan. Add
this code to the main function.
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y0 = 1;
s1 = 2;
tspan = [0 0.1];

5 Solve the DDE for 0 ≤ t ≤ 0.1, with initial conditions y(0) = 1, and y '(0) = 2. Add this
code to the main function.

sol1 = ddensd(@ddefun,delay,delay,{y0,s1},tspan);
6 Solve the equation again, this time using y '(0) = 0.4063757399599599. Add this code

to the main function.

s2 = 0.4063757399599599;
sol2 = ddensd(@ddefun,delay,delay,{y0,s2},tspan);

7 Plot the results. Add this code to the main function.

figure
plot(sol1.x,sol1.y,sol2.x,sol2.y);
legend('y''(0) = 2','y''(0) = .40638','Location','NorthWest');
xlabel('time t');
ylabel('solution y');
title('Two solutions of Jackiewicz''s initial-value NDDE');

8 Run your program to calculate and plot the solutions for each value of s.
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See Also
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• “Run Functions in the Editor”

More About
• “Create Function Handle”
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Numerical Integration

• “Integration to Find Arc Length” on page 15-2
• “Complex Line Integrals” on page 15-4
• “Singularity on Interior of Integration Domain” on page 15-7
• “Analytic Solution to Integral of Polynomial” on page 15-9
• “Integration of Numeric Data” on page 15-11
• “Calculate Tangent Plane to Surface” on page 15-16
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Integration to Find Arc Length
This example shows how to parametrize a curve and compute the arc length using
integral.

Consider the curve parameterized by the equations

x(t) = sin(2t),  y(t) = cos(t),  z(t) = t,

where t ∊ [0,3π].

Create a three-dimensional plot of this curve.

t = 0:0.1:3*pi;
plot3(sin(2*t),cos(t),t)

The arc length formula says the length of the curve is the integral of the norm of the
derivatives of the parameterized equations.

4 2 1
2 2

0

3

cos( ) sin( ) .t t dt+ +Ú
p

Define the integrand as an anonymous function.

f = @(t) sqrt(4*cos(2*t).^2 + sin(t).^2 + 1);

Integrate this function with a call to integral.

len = integral(f,0,3*pi)

len =
  17.2220

The length of this curve is about 17.2.

See Also
integral
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More About
• “Create Function Handle”
• “Singularity on Interior of Integration Domain” on page 15-7
• “Integration of Numeric Data” on page 15-11

 See Also
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Complex Line Integrals
This example shows how to calculate complex line integrals using the 'Waypoints'
option of the integral function. In MATLAB®, you use the 'Waypoints' option to
define a sequence of straight line paths from the first limit of integration to the first
waypoint, from the first waypoint to the second, and so forth, and finally from the last
waypoint to the second limit of integration.

Define the Integrand with an Anonymous Function

Integrate

where  is a closed contour that encloses the simple pole of  at the origin.

Define the integrand with an anonymous function.

fun = @(z) exp(z)./z;

Integrate Without Using Waypoints

You can evaluate contour integrals of complex-valued functions with a parameterization.
In general, a contour is specified, and then differentiated and used to parameterize the
original integrand. In this case, specify the contour as the unit circle, but in all cases, the
result is independent of the contour chosen.

g = @(theta) cos(theta) + 1i*sin(theta);
gprime = @(theta) -sin(theta) + 1i*cos(theta);
q1 = integral(@(t) fun(g(t)).*gprime(t),0,2*pi)

q1 = 
   0.0000 + 6.2832i

This method of parameterizing, although reliable, can be difficult and time consuming
since a derivative must be calculated before the integration is performed. Even for simple
functions, you need to write several lines of code to obtain the correct result. Since the
result is the same with any closed contour that encloses the pole (in this case, the origin),
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instead you can use the 'Waypoints' option of integral to construct a square or
triangular path that encloses the pole.

Integrate Along a Contour That Encloses No Poles

If any limit of integration or element of the waypoints vector is complex, then integral
performs the integration over a sequence of straight line paths in the complex plane. The
natural direction around a contour is counterclockwise; specifying a clockwise contour is
akin to multiplying by -1. Specify the contour in such a way that it encloses a single
functional singularity. If you specify a contour that encloses no poles, then Cauchy's
integral theorem guarantees that the value of the closed-loop integral is zero.

To see this, integrate fun around a square contour away from the origin. Use equal
limits of integration to form a closed contour.

C = [2+i 2+2i 1+2i];
q = integral(fun,1+i,1+i,'Waypoints',C)

q = 
   3.3307e-16 - 7.7716e-16i

The result is on the order of eps and effectively zero.

Integrate Along a Contour with a Pole in the Interior

Specify a square contour that completely encloses the pole at the origin, and then
integrate.

C = [1+i -1+i -1-i 1-i];
q2 = integral(fun,1,1,'Waypoints',C)

q2 = 
   0.0000 + 6.2832i

This result agrees with the q1 calculated above, but uses much simpler code.

The exact answer for this problem is .

2*pi*i
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ans = 
   0.0000 + 6.2832i

See Also
integral

More About
• “Create Function Handle”
• “Singularity on Interior of Integration Domain” on page 15-7
• “Integration of Numeric Data” on page 15-11
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Singularity on Interior of Integration Domain
This example shows how to split the integration domain to place a singularity on the
boundary.

Define the Integrand with an Anonymous Function

The integrand of the complex-valued integral

has a singularity when x = y = 0 and is, in general, singular on the line y = -x.

Define this integrand with an anonymous function.

fun = @(x,y) ((x+y).^(-1/2));

Integrate Over a Square

Integrate fun over a square domain specified by  and .

format long
q = integral2(fun,-1,1,-1,1)

Warning: Non-finite result. The integration was unsuccessful. Singularity likely.

q = 
                Inf - 3.486553786882412e+06i

If there are singular values in the interior of the integration region, the integration fails
to converge and returns a warning.

Split the Integration Domain into Two Triangles

You can redefine the integral by splitting the integration domain into complementary
pieces and adding the smaller integrations together. Avoid integration errors and
warnings by placing singularities on the boundary of the domain. In this case, you can
split the square integration region into two triangles along the singular line y = -x and
add the results.
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q1 = integral2(fun,-1,1,-1,@(x)-x);
q2 = integral2(fun,-1,1,@(x)-x,1);
q = q1 + q2

q = 
  3.771236166328259 - 3.771236166328255i

The integration succeeds when the singular values are on the boundary.

The exact value of this integral is

8/3*sqrt(2)*(1-i)

ans = 
  3.771236166328253 - 3.771236166328253i

See Also
integral | integral2 | integral3

More About
• “Create Function Handle”
• “Complex Line Integrals” on page 15-4
• “Integration of Numeric Data” on page 15-11
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Analytic Solution to Integral of Polynomial
This example shows how to use the polyint function to integrate polynomial
expressions analytically. Use this function to evaluate indefinite integral expressions of
polynomials.

Define the Problem

Consider the real-valued indefinite integral,

The integrand is a polynomial, and the analytic solution is

where  is the constant of integration. Since the limits of integration are unspecified, the
integral function family is not well-suited to solving this problem.

Express the Polynomial with a Vector

Create a vector whose elements represent the coefficients for each descending power of x.

p = [4 0 -2 0 1 4];

Integrate the Polynomial Analytically

Integrate the polynomial analytically using the polyint function. Specify the constant
of integration with the second input argument.

k = 2;
I = polyint(p,k)

I = 

    0.6667         0   -0.5000         0    0.5000    4.0000    2.0000

 Analytic Solution to Integral of Polynomial
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The output is a vector of coefficients for descending powers of x. This result matches the
analytic solution above, but has a constant of integration k = 2.

See Also
polyint | polyval

More About
• “Singularity on Interior of Integration Domain” on page 15-7
• “Integration of Numeric Data” on page 15-11
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Integration of Numeric Data
This example shows how to integrate a set of discrete velocity data numerically to
approximate the distance traveled. The integral family only accepts function handles
as inputs, so those functions cannot be used with discrete data sets. Use trapz or
cumtrapz when a functional expression is not available for integration.

View the Velocity Data

Consider the following velocity data and corresponding time data.

vel = [0 .45 1.79 4.02 7.15 11.18 16.09 21.90 29.05 29.05 ...
29.05 29.05 29.05 22.42 17.9 17.9 17.9 17.9 14.34 11.01 ...
8.9 6.54 2.03 0.55 0];
time = 0:24;

This data represents the velocity of an automobile (in m/s) taken at 1 s intervals over 24
s.

Plot the velocity data points and connect each point with a straight line.

figure
plot(time,vel,'-*')
grid on
title('Automobile Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
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The slope is positive during periods of acceleration, zero during periods of constant
velocity, and negative during periods of deceleration. At time t = 0, the vehicle is at rest
with vel(1) = 0 m/s. The vehicle accelerates until reaching a maximum velocity at t =
8 s of vel(9) = 29.05 m/s and maintains this velocity for 4 s. It then decelerates to
vel(14) = 17.9 m/s for 3 s and eventually back down to rest. Since this velocity curve
has multiple discontinuities, a single continuous function cannot describe it.

Calculate the Total Distance Traveled

trapz performs discrete integration by using the data points to create trapezoids, so it is
well suited to handling data sets with discontinuities. This method assumes linear
behavior between the data points, and accuracy may be reduced when the behavior
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between data points is nonlinear. To illustrate, you can draw trapezoids onto the graph
using the data points as vertices.
xverts = [time(1:end-1); time(1:end-1); time(2:end); time(2:end)];
yverts = [zeros(1,24); vel(1:end-1); vel(2:end); zeros(1,24)];
p = patch(xverts,yverts,'b','LineWidth',1.5);

trapz calculates the area under a set of discrete data by breaking the region into
trapezoids. The function then adds the area of each trapezoid to compute the total area.

Calculate the total distance traveled by the automobile (corresponding to the shaded
area) by integrating the velocity data numerically using trapz. By default, the spacing
between points is assumed to be 1 if you use the syntax trapz(Y). However, you can
specify a different uniform or nonuniform spacing X with the syntax trapz(X,Y). In this
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case, the spacing between readings in the time vector is 1, so it is acceptable to use the
default spacing.

distance = trapz(vel)

distance = 345.2200

The distance traveled by the automobile in t = 24 s is about 345.22 m.

Plot Cumulative Distance Traveled

The cumtrapz function is closely related to trapz. While trapz returns only the final
integration value, cumtrapz also returns intermediate values in a vector.

Calculate the cumulative distance traveled and plot the result.

cdistance = cumtrapz(vel);
T = table(time',cdistance','VariableNames',{'Time','CumulativeDistance'})

T=25x2 table
    Time    CumulativeDistance
    ____    __________________

     0           0            
     1       0.225            
     2       1.345            
     3        4.25            
     4       9.835            
     5          19            
     6      32.635            
     7       51.63            
     8      77.105            
     9      106.15            
    10       135.2            
    11      164.25            
    12      193.31            
    13      219.04            
    14       239.2            
    15       257.1            

plot(cdistance)
title('Cumulative Distance Traveled Per Second')
xlabel('Time (s)')
ylabel('Distance (m)')
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See Also
cumtrapz | integral | trapz

More About
• “Singularity on Interior of Integration Domain” on page 15-7
• “Analytic Solution to Integral of Polynomial” on page 15-9

 See Also

15-15



Calculate Tangent Plane to Surface
This example shows how to approximate gradients of a function by finite differences. It
then shows how to plot a tangent plane to a point on the surface by using these
approximated gradients.

Create the function  using a function handle.

f = @(x,y) x.^2 + y.^2;

Approximate the partial derivatives of  with respect to  and  by using the
gradient function. Choose a finite difference length that is the same as the mesh size.

[xx,yy] = meshgrid(-5:0.25:5);
[fx,fy] = gradient(f(xx,yy),0.25);

The tangent plane to a point on the surface, , is given by

The fx and fy matrices are approximations to the partial derivatives  and . The
point of interest in this example, where the tangent plane meets the functional surface, is
(x0,y0) = (1,2). The function value at this point of interest is f(1,2) = 5.

To approximate the tangent plane z you need to find the value of the derivatives at the
point of interest. Obtain the index of that point, and find the approximate derivatives
there.

x0 = 1;
y0 = 2;
t = (xx == x0) & (yy == y0);
indt = find(t);
fx0 = fx(indt);
fy0 = fy(indt);

Create a function handle with the equation of the tangent plane z.

z = @(x,y) f(x0,y0) + fx0*(x-x0) + fy0*(y-y0);
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Plot the original function , the point P, and a piece of plane z that is tangent to
the function at P.

surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on
surf(xx,yy,z(xx,yy))
plot3(1,2,f(1,2),'r*')

View a side profile.

view(-135,9)
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See Also
gradient

More About
• “Create Function Handle”
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Fourier Transforms

• “Fourier Transforms” on page 16-2
• “Basic Spectral Analysis” on page 16-11
• “Polynomial Interpolation Using FFT” on page 16-19
• “2-D Fourier Transforms” on page 16-24
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Fourier Transforms
The Fourier transform is a mathematical formula that relates a signal sampled in time
or space to the same signal sampled in frequency. In signal processing, the Fourier
transform can reveal important characteristics of a signal, namely, its frequency
components.

The Fourier transform is defined for a vector  with  uniformly sampled points by

 is one of  complex roots of unity where  is the imaginary unit. For  and ,
the indices  and  range from  to .

The fft function in MATLAB® uses a fast Fourier transform algorithm to compute the
Fourier transform of data. Consider a sinusoidal signal x that is a function of time t with
frequency components of 15 Hz and 20 Hz. Use a time vector sampled in increments of

 of a second over a period of 10 seconds.

t = 0:1/50:10-1/50;                     
x = sin(2*pi*15*t) + sin(2*pi*20*t);
plot(t,x)
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Compute the Fourier transform of the signal, and create the vector f that corresponds to
the signal's sampling in frequency space.

y = fft(x);     
f = (0:length(y)-1)*50/length(y);

When you plot the magnitude of the signal as a function of frequency, the spikes in
magnitude correspond to the signal's frequency components of 15 Hz and 20 Hz.

plot(f,abs(y))
title('Magnitude')
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The transform also produces a mirror copy of the spikes, which correspond to the signal's
negative frequencies. To better visualize this periodicity, you can use the fftshift
function, which performs a zero-centered, circular shift on the transform.

n = length(x);                         
fshift = (-n/2:n/2-1)*(50/n);
yshift = fftshift(y);
plot(fshift,abs(yshift))

16 Fourier Transforms

16-4



Noisy Signals

In scientific applications, signals are often corrupted with random noise, disguising their
frequency components. The Fourier transform can process out random noise and reveal
the frequencies. For example, create a new signal, xnoise, by injecting Gaussian noise
into the original signal, x.

xnoise = x + 2.5*gallery('normaldata',size(t),4);

Signal power as a function of frequency is a common metric used in signal processing.
Power is the squared magnitude of a signal's Fourier transform, normalized by the
number of frequency samples. Compute and plot the power spectrum of the noisy signal
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centered at the zero frequency. Despite noise, you can still make out the signal's
frequencies due to the spikes in power.

ynoise = fft(xnoise);
ynoiseshift = fftshift(ynoise);    
power = abs(ynoiseshift).^2/n; 
plot(fshift,power)
title('Power')

Computational Efficiency

Using the Fourier transform formula directly to compute each of the  elements of 
requires on the order of  floating-point operations. The fast Fourier transform
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algorithm requires only on the order of  operations to compute. This computational
efficiency is a big advantage when processing data that has millions of data points. Many
specialized implementations of the fast Fourier transform algorithm are even more
efficient when  is a power of 2.

Consider audio data collected from underwater microphones off the coast of California.
This data can be found in a library maintained by the Cornell University Bioacoustics
Research Program. Load and format a subset of the data in bluewhale.au, which
contains a Pacific blue whale vocalization. You can use the command sound(x,fs) to
listen to the entire audio file.

whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);
whaleMoan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(whaleMoan)-1)/fs);

plot(t,whaleMoan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])
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Specify a new signal length that is the next power of 2 greater than the original length.
Then, use fft to compute the Fourier transform using the new signal length. fft
automatically pads the data with zeros to increase the sample size. This padding can
make the transform computation significantly faster, particularly for sample sizes with
large prime factors.

m = length(whaleMoan); 
n = pow2(nextpow2(m));
y = fft(whaleMoan,n);        

Plot the power spectrum of the signal. The plot indicates that the moan consists of a
fundamental frequency around 17 Hz and a sequence of harmonics, where the second
harmonic is emphasized.

16 Fourier Transforms

16-8



f = (0:n-1)*(fs/n)/10; % frequency vector
power = abs(y).^2/n;   % power spectrum      
plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')

See Also
ifft | fft2 | fftn | fftw | fft | fftshift | nextpow2

 See Also
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Related Examples
• “Analyzing Cyclical Data with FFT”
• “2-D Fourier Transforms” on page 16-24
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Basic Spectral Analysis
The Fourier transform is a tool for performing frequency and power spectrum analysis of
time-domain signals.

Spectral Analysis Quantities

Spectral analysis studies the frequency spectrum contained in discrete, uniformly
sampled data. The Fourier transform is a tool that reveals frequency components of a
time- or space-based signal by representing it in frequency space. The following table
lists common quantities used to characterize and interpret signal properties. To learn
more about the Fourier transform, see “Fourier Transforms” on page 16-2.
Quantity Description
x Sampled data
n = length(x) Number of samples
fs Sample frequency (samples per unit time or space)
dt = 1/fs Time or space increment per sample
t = (0:n-1)/fs Time or space range for data
y = fft(x) Discrete Fourier transform of data (DFT)
abs(y) Amplitude of the DFT
(abs(y).^2)/n Power of the DFT
fs/n Frequency increment
f = (0:n-1)*(fs/n) Frequency range
fs/2 Nyquist frequency (midpoint of frequency range)

Noisy Signal

The Fourier transform can compute the frequency components of a signal that is
corrupted by random noise.

Create a signal with component frequencies at 15 Hz and 40 Hz, and inject random
Gaussian noise.

fs = 100;                                % sample frequency (Hz)
t = 0:1/fs:10-1/fs;                      % 10 second span time vector
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x = (1.3)*sin(2*pi*15*t) ...             % 15 Hz component
  + (1.7)*sin(2*pi*40*(t-2)) ...         % 40 Hz component
  + 2.5*gallery('normaldata',size(t),4); % Gaussian noise;

The Fourier transform of the signal identifies its frequency components. In MATLAB®,
the fft function computes the Fourier transform using a fast Fourier transform
algorithm. Use fft to compute the discrete Fourier transform of the signal.

y = fft(x);

Plot the power spectrum as a function of frequency. While noise disguises a signal's
frequency components in time-based space, the Fourier transform reveals them as spikes
in power.

n = length(x);          % number of samples
f = (0:n-1)*(fs/n);     % frequency range
power = abs(y).^2/n;    % power of the DFT

plot(f,power)
xlabel('Frequency')
ylabel('Power')
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In many applications, it is more convenient to view the power spectrum centered at 0
frequency because it better represents the signal's periodicity. Use the fftshift
function to perform a circular shift on y, and plot the 0-centered power.

y0 = fftshift(y);         % shift y values
f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range
power0 = abs(y0).^2/n;    % 0-centered power

plot(f0,power0)
xlabel('Frequency')
ylabel('Power')
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Audio Signal

You can use the Fourier transform to analyze the frequency spectrum of audio data.

The file bluewhale.au contains audio data from a Pacific blue whale vocalization
recorded by underwater microphones off the coast of California. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics
Research Program.

Because blue whale calls are so low, they are barely audible to humans. The time scale in
the data is compressed by a factor of 10 to raise the pitch and make the call more clearly
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audible. Read and plot the audio data. You can use the command sound(x,fs) to listen
to the audio.
whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);

plot(x)
xlabel('Sample Number')
ylabel('Amplitude')

The first sound is a "trill" followed by three "moans". This example analyzes a single
moan. Specify new data that approximately consists of the first moan, and correct the
time data to account for the factor-of-10 speed-up. Plot the truncated signal as a function
of time.
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moan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(moan)-1)/fs);

plot(t,moan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])

The Fourier transform of the data identifies frequency components of the audio signal. In
some applications that process large amounts of data with fft, it is common to resize the
input so that the number of samples is a power of 2. This can make the transform
computation significantly faster, particularly for sample sizes with large prime factors.
Specify a new signal length n that is a power of 2, and use the fft function to compute

16 Fourier Transforms

16-16



the discrete Fourier transform of the signal. fft automatically pads the original data
with zeros to increase the sample size.

m = length(moan);       % original sample length
n = pow2(nextpow2(m));  % transform length
y = fft(moan,n);        % DFT of signal

Adjust the frequency range due to the speed-up factor, and compute and plot the power
spectrum of the signal. The plot indicates that the moan consists of a fundamental
frequency around 17 Hz and a sequence of harmonics, where the second harmonic is
emphasized.

f = (0:n-1)*(fs/n)/10;
power = abs(y).^2/n;      

plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')
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See Also
ifft | fft2 | fftn | fft | fftshift | nextpow2

Related Examples
• “Fourier Transforms” on page 16-2
• “Analyzing Cyclical Data with FFT”
• “2-D Fourier Transforms” on page 16-24
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Polynomial Interpolation Using FFT
Use the fast Fourier transform (FFT) to estimate the coefficients of a trigonometric
polynomial that interpolates a set of data.

FFT in Mathematics

The FFT algorithm is associated with applications in signal processing, but it can also be
used more generally as a fast computational tool in mathematics. For example,

coefficients ci of an nth degree polynomial c x c x c x c
n n

n n1 2

1

1
+ + + +

-

+
...  that interpolates a

set of data are commonly computed by solving a straightforward system of linear
equations. While studying asteroid orbits in the early 19th century, Carl Friedrich Gauss
discovered a mathematical shortcut for computing the coefficients of a polynomial
interpolant by splitting the problem up into smaller subproblems and combining the
results. His method was equivalent to estimating the discrete Fourier transform of his
data.

Interpolate Asteroid Data

In a paper by Gauss, he describes an approach to estimating the orbit of the Pallas
asteroid. He starts with the following twelve 2-D positional data points x and y.

x = 0:30:330;
y = [408 89 -66 10 338 807 1238 1511 1583 1462 1183 804];
plot(x,y,'ro')
xlim([0 360])
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Gauss models the asteroid's orbit with a trigonometric polynomial of the following form.

Use fft to compute the coefficients of the polynomial.
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m = length(y);
n = floor((m+1)/2);
z = fft(y)/m;

a0 = z(1); 
an = 2*real(z(2:n));
a6 = z(n+1);
bn = -2*imag(z(2:n));

Plot the interpolating polynomial over the original data points.

hold on
px = 0:0.01:360;
k = 1:length(an);
py = a0 + an*cos(2*pi*k'*px/360) ...
        + bn*sin(2*pi*k'*px/360) ...
        + a6*cos(2*pi*6*px/360); 

plot(px,py)
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2-D Fourier Transforms
The fft2 function transforms 2-D data into frequency space. For example, you can
transform a 2-D optical mask to reveal its diffraction pattern.

Two-Dimensional Fourier Transform
The following formula defines the discrete Fourier transform Y of an m-by-n matrix X.
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ωm and ωn are complex roots of unity defined by the following equations.
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i is the imaginary unit, p and j are indices that run from 0 to m–1, and q and k are
indices that run from 0 to n–1. The indices for X and Y are shifted by 1 in this formula to
reflect matrix indices in MATLAB.

Computing the 2-D Fourier transform of X is equivalent to first computing the 1-D
transform of each column of X, and then taking the 1-D transform of each row of the
result. In other words, the command fft2(X) is equivalent to Y = fft(fft(X).').'.

2-D Diffraction Pattern
In optics, the Fourier transform can be used to describe the diffraction pattern produced
by a plane wave incident on an optical mask with a small aperture [1]. This example uses
the fft2 function on an optical mask to compute its diffraction pattern.

Create a logical array that defines an optical mask with a small, circular aperture.

n = 2^10;                 % size of mask
M = zeros(n);
I = 1:n; 
x = I-n/2;                % mask x-coordinates 
y = n/2-I;                % mask y-coordinates
[X,Y] = meshgrid(x,y);    % create 2-D mask grid
R = 10;                   % aperture radius
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A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
M(A) = 1;                 % set mask elements inside aperture to 1
imagesc(M)                % plot mask
axis image

Use fft2 to compute the 2-D Fourier transform of the mask, and use the fftshift
function to rearrange the output so that the zero-frequency component is at the center.
Plot the resulting diffraction pattern frequencies. Blue indicates small amplitudes and
yellow indicates large amplitudes.

DP = fftshift(fft2(M));
imagesc(abs(DP))
axis image
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To enhance the details of regions with small amplitudes, plot the 2-D logarithm of the
diffraction pattern. Very small amplitudes are affected by numerical round-off error, and
the rectangular grid causes radial asymmetry.

imagesc(abs(log2(DP)))
axis image
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Related Examples
• “Fourier Transforms” on page 16-2
• “Analyzing Cyclical Data with FFT”
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